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Abstract

In this thesis we present a compiler which is able to translate Theorema programs into executable Java

code, which can then be used for extensive and fast calculations called from within Theorema.

Generally, it  can be observed that higher elegance in programming languages and software systems

must be paid for by dramatically increasing computing times, see for example Prolog computations and

original Theorema. One of the basic strategical goals of the Theorema system is to offer predicate logic

as  a  uniform frame for  the  three  main activities of  mathematics: proving,  solving, and computing. It  is

one of the strong features of Theorema that it combines automated theorem proving and computation in

one  logical  and  software  frame.  In  fact,  the  same  Theorema  definitions  that  are  used  for  stating  and

proving theorems can also be applied for computing.

The  actual  motivation  for  this  thesis  was  the  slowness  of  computations  in  the  current  version  of

Theorema, which is due to the usage of special logical inference rules (directed equational logic) as an

interpreter for the Theorema algorithms. Therefore, it is of utmost importance to find a way to drastically

speed-up the execution of Theorema algorithms without losing the elegance of writing the algorithms in

the same  predicate  logic  version (namely that  of  Theorema) in which also general mathematical state-

ments, in particular correctness theorems for algorithms, are expressed. The main approach for achieving

this goal  is  compilation of  Theorema algorithms into a  machine-oriented language, in  our  case Java.  It

turns  out  that  this  is  possible  for  Theorema  algorithms,  at  least  for  a  well  defined  and  rich  class  of

practically interesting algorithms that includes the full power of induction, sequence variables, and even

functors.

In this thesis we will show how this goal of compilation of Theorema programs can be achieved in a

satisfactory way that  brings the  execution times of  compiled Theorema programs drastically below the

execution times of Mathematica algorithms and not more than a factor of 100 above the execution times

of hand coded Java algorithms.

Keywords: Compilation, Predicate Logic, Theorema
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Zusammenfassung

In  dieser  Dissertation  wird  ein  Compiler  vorgestellt,  der  Theorema-Programme  in  ausführbaren  Java

Code übersetzen kann. Dieser Code kann dann für schnelle Berechnungen von Theorema aus exekutiert

werden.

Höhere  Eleganz  bei  Programmiersprachen  und  Softwaresystemen  muss  in  der  Praxis  meist  mit

dramatisch schlechteren Laufzeiten teuer bezahlt werden, siehe Prolog und (die derzeitige Version von)

Theorema. Eines der zentralen und grundlegenden  Ziele von Theorema ist der Einsatz von Prädikaten-

logik als ein einheitliches System für die drei Hauptaktivitäten in der Mathematik: Beweisen, Lösen und

Berechnen.  Eine  der  herausragenden  Besonderheiten  von  Theorema  ist  die  Kombination  von  automa-

tischem Beweisen und  Berechnungen in einem logischen und softwaretechnischen Rahmen. Tatsächlich

können  die  Theorema-Definitionen,  die  zum  Formulieren  und  Beweisen  von  Theoremen  verwendet

werden, auch für Berechnungen angewendet werden.

Die eigentliche Motivation für diese Arbeit war die Langsamkeit von Berechnungen in der derzeiti-

gen  Version  von  Theorema,  die  durch  die  Verwendung  von  speziellen  logischen  Schlussregeln

(gerichtete  Gleichheitslogik)  als  Interpreter  für  Theorema-Algorithmen  bedingt  ist.  Daher  ist  es  von

größter  Wichtigkeit  einen  Weg  zu  finden,  die  Ausführung  von  Theorema-Algorithmen  drastisch  zu

beschleunigen, ohne jedoch die Eleganz zu verlieren, die Algorithmen in der selben Prädikatenlogikver-

sion  (nämlich  jener  von  Theorema)  zu  schreiben,  in  der  auch  generelle  mathematische Aussagen,  ins-

besondere  Korrektheitsbeweise  von  Algorithmen,  formuliert  sind.  Der  zentrale  Ansatz  zur  Erreichung

dieses  Ziels  ist  die  Kompilierung von  Theorema-Algorithmen in  eine  maschinenorientierte Sprache,  in

unserem  Fall  Java.  Es  stellt  sich  heraus,  dass  das  zumindest  für  eine  wohldefinierte  and  reichhaltige

Klasse von in der Praxis interessanten Algorithmen möglich ist, die vor allem auch Induktion, Sequenz-

variablen und sogar Funktoren umfassen können.

In  dieser  Arbeit  zeigen  wir,  wie  das  Ziel  der  Kompilierung  von  Theorema-Programmen  auf  eine

zufriedenstellende  Weise  erreicht  werden  kann,  sodass  die  Ausführungszeiten  von  kompilierten  Theo-

rema-Programmen deutlich unter  jenen von Mathematica und nur um einen Faktor 100  über  jenen von

direkt in Java geschriebenen Algorithmen liegen.

Schlüsselwörter: Kompilation, Prädikatenlogik, Theorema
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Introduction

In this thesis we present a compiler for the Theorema system. It is able to translate Theorema programs

into executable Java  byte code,  which can then be  used for  extensive and fast calculations called  from

within Theorema.  It  is  one  of  the  strong  features  of  the  Theorema  system that  it  combines  automated

theorem proving and computation in one logical and software frame. In fact, the same Theorema defini-

tions that are used for stating and proving theorems can also be applied for computing.

The  actual  motivation  for  this  thesis  was  the  slowness  of  computations  in  the  current  version  of

Theorema, which is due to the usage of special logical inference rules (directed equational logic) as an

interpreter for the Theorema algorithms.  Especially when working with functors and combining them to

nested  "towers",  computations become so  slow that  they are  only interesting for  pedagogical  purposes

but  not  for  actual  scientific  applications  of  Theorema.  Therefore,  we  wanted  to  come  up  with  an

approach  to  drastically  speed-up  computation  times  in  Theorema,  and  the  compilation  to  a  fast  and

modern language like Java is the natural way to achieve this goal.

Two  aspects  were  the  driving  principles  during  the  design  and  development  of  the  Theorema-Java

Compiler presented in this thesis:

è All  programs  formulated  in  the  current  Theorema  language  should  be  translatable  by  the

compiler.  This  includes predicate  logic quantifiers with bounded range (e.g.,  "  and $),  special

Theorema  quantifiers  (e.g.,  the  TupleOf  quantifier  and  the  SumOf  quantifier),  sequence  vari-

ables, and, particularly, functors.

è Computing with the compiled Theorema programs should be completely hidden from the user,

i.e., it should not be necessary for the user to get in contact with the Java code. Nevertheless, the

user is, of course, able to access the well readable and well structured Java source code.

Combination of Elegance and Efficiency

Generally, it can be observed that higher elegance in programming languages and software systems must

be  paid  for  by  dramatically  increasing  computing  times,  see  for  example  Prolog  computations  and

original Theorema. One of the basic strategical goals of the Theorema system is to offer predicate logic

as  a  uniform frame for  the  three  main  activities  of  mathematics: proving,  solving,  and  computing, see

[Buch97], [Buch99c], [Buch00], [Buch04]. In particular, computing, in this view, is just a special case of

proving,  namely proving by conditional  rewriting of  ground terms.  Thus,  exploration  sequences  of  the

following kind should be possible in Theorema:

è Specify a problem, e.g., the computation of Gröbner Bases,

è Propose an algorithm for the solution of the problem, e.g., Buchberger's algorithm,

è Prove the correctness of the algorithm,

è Compute by applying the correct algorithm to concrete input.

This  exploration  sequence  is  possible  in  Theorema  since  its  design  and  implementation  in  1996

([Buch96b],  [Buch96c],  [Buch96d],  [Buch96e],  [Buch97],  [Tma97],  [Tma98],  [Tma00],  [Tma06],

[WiBu06]).  Both  the  Theorema reasoners  and the Theorema "computers"  are  written in the same meta

language,  namely  Mathematica.  Not  surprisingly,  considering  computing  as  special  proving  leads  to

intolerably  slow  execution  of  algorithms.  In  fact,  computations  in  Theorema  can  not  be  faster  than

computations in the Mathematica language, which by itself is slow, see [Buch91]. In practice, it is even

slower by some constant, but not dramatic, factor. Thus, the current Theorema interpreter for Theorema

algorithms has only pedagogical  value. But sometimes even the pedagogical  goals can not be achieved

because  running  times  are  too  long  even  for  very  small  examples,  and  so,  for  example,  the  study  of

computing time behavior of various version of an algorithm can not be explored in the classroom context.

Introduction 1



This  exploration  sequence  is  possible  in  Theorema  since  its  design  and  implementation  in  1996

([Buch96b],  [Buch96c],  [Buch96d],  [Buch96e],  [Buch97],  [Tma97],  [Tma98],  [Tma00],  [Tma06],

[WiBu06]).  Both  the  Theorema reasoners  and the Theorema "computers"  are  written in the same meta

language,  namely  Mathematica.  Not  surprisingly,  considering  computing  as  special  proving  leads  to

intolerably  slow  execution  of  algorithms.  In  fact,  computations  in  Theorema  can  not  be  faster  than

computations in the Mathematica language, which by itself is slow, see [Buch91]. In practice, it is even

slower by some constant, but not dramatic, factor. Thus, the current Theorema interpreter for Theorema

algorithms has only pedagogical  value. But sometimes even the pedagogical  goals can not be achieved

because  running  times  are  too  long  even  for  very  small  examples,  and  so,  for  example,  the  study  of

computing time behavior of various version of an algorithm can not be explored in the classroom context.

Therefore, it is of utmost importance to find a way to drastically speed-up the execution of Theorema

algorithms without  losing  the  elegance  of  writing the  algorithm in  the  same Theorema  predicate  logic

version in which also general mathematical statements, in particular correctness theorems for algorithms,

are expressed.

The main approach for achieving this goal is the compilation of Theorema algorithms into a machine-

oriented language, like C, C++, or Java (see Section 2.1). It turns out that this is possible for Theorema

algorithms, at least for a well defined and rich class of practically interesting algorithms that includes the

full power of induction, sequence variables, and even functors. Note that, in contrast, compilation is not

possible in full-fledged Mathematica because of its many ad hoc peculiarities.

In this thesis we will show how this goal of compilation of Theorema programs can be achieved in a

satisfactory way.

Statement of Originality

Theorema,  developed  at  the  Research  Institute  for  Symbolic  Computation  (RISC,  Johannes  Kepler

University  Linz,  Austria)  since  1994,  is  implemented  on  the  basis  of  the  commercially  distributed

symbolic computation software system Mathematica and is based on a concept and on the ideas of Bruno

Buchberger (see [Buch96b],  [Buch96c],  [Buch96d],  [Buch96e],  [Buch97]).  Since the start of the Theo-

rema project  a  lot  of  people,  some of  them left  RISC,  some are  still  active  members in  the  Theorema

group, have contributed to the constant development and improvement of the system. In the following list

I  will enumerate the most important members of the Theorema group as well as those who contributed

most to the development of the compiler presented in the course of this thesis.

è Bruno Buchberger is the inventor of the Theorema system and also implemented its first version

including the first prototypes of some provers. Especially, he introduced the concept of functors

in  Theorema  (see  [Tma00]),  which  is  the  very  concept  to  build-up  mathematics  bottom-up,

starting  from  simple  domains  (for  example,  rational  numbers  with  simple  operations  like

addition, multiplication) and repeatedly applying suitable functors to arrive at arbitrary complex

domains. He is a very active member and the driving force of the Theorema group ever since the

start of the Theorema project.

è Bruno  Buchberger,  again.  Since  he  is  not  only  the  creator  of  the  Theorema  system, as  stated

above,  but  also  the  scientific  supervisor  of  this  thesis,  it  is,  no  doubt,  appropriate  mentioning

him twice. He lively contributed to the content in many seminars and personal meetings. Particu-

larly, the translation of functors (see Chapter 7)  and of sequence variables (see Chapter 5)  are

based on his ideas ([Buch07a]).
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è

Bruno  Buchberger,  again.  Since  he  is  not  only  the  creator  of  the  Theorema  system, as  stated

above,  but  also  the  scientific  supervisor  of  this  thesis,  it  is,  no  doubt,  appropriate  mentioning

him twice. He lively contributed to the content in many seminars and personal meetings. Particu-

larly, the translation of functors (see Chapter 7)  and of sequence variables (see Chapter 5)  are

based on his ideas ([Buch07a]).

è Tudor Jebelean, co-leader of the Theorema group, contributed to a module for the elimination of

pattern matching (see Section 3.1), which is needed in the translation of Theorema theories into

an intermediate code, which was designed by him as well ([Jebe07]).

è Martin  Giese  gave  many very  important  advice  and  contributions  in  the  starting  phase  of  the

development  of  the  compiler.  Particularly,  the  compilation  of  abstract  data  types  and  the

associated class design (see Chapter 4) are mainly based on his ideas ([Gies07]).

è Wolfgang Windsteiger is the member of the Theorema group who has the best overview of the

current implementation of the entire Theorema system. Therefore, he is in charge of the mainte-

nance of the system and is also very active in the its further development. Moreover, he is a very

helpful  person  always  taking  time  to  explain  the  internals  of  Theorema  to  newcomers  of  the

group and helping to  solve problems with it,  however hard and involved they are.  Without his

cordial and extensive help this thesis would have been hardly possible.

è Temur Kutsia, also a very active member of the Theorema group, contributed to the translation

of sequence variables by virtue of his rich experience in this area ([Kuts07]).

Structure of the Thesis

This  thesis  is  divided  into  two  main  parts:  a  detailed  description  of  the  Theorema-Java  Compiler  and

case  studies  showing the  compiler  in  action.  In  the  first  part,  we will  give  an  exact  description  of  the

concrete  implementation  problems,  which  naturally  arise  from  the  inherent  differences  between  the

Theorema  language and  the  Java  language.  Then,  we will  state  the  reasons  why we chose  Java  as  the

target  language of  the  compiler  and also  give a  list  of  some special  features of  the compiler.  The  next

section provides a first example, namely merging two sorted lists, and concretely shows how a Theorema

theory can be  compiled into Java code  and how the thereby created  code  can be  executed from within

Theorema.  Chapters  4-7  deal  with  the  details  of  the  translation  of  Theorema  programs  into  Java  byte

code. Chapter 8 shows how to call compiled algorithms, and Chapter 9 documents commands the change

the compiler's behavior. The final Chapter 10 describes the whole Java-sided framework, which provides

several auxiliary Java classes.

Part  2 contains two case studies which demonstrate the capabilities and the usage of the Theorema-

Java Compiler. The first case study (see Chapter 11), which is based on the work of Bruno Buchberger in

[Buch03],  is  on  computations  of  Gröbner  Bases  and  shows  the  power  of  functors  and  their  practical

application.  The  second  case  study  (see  Chapter  12)  presents  a  Theorema  implementation of  an  algo-

rithm for interpolating univariate polynomials and is based on [Wind06].
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On the Document

This thesis has been created using the Mathematica 6.0 front end,  and it  exists in two version: an elec-

tronic  version  and  a  printed  version.  While  the  latter  one  is  the  classical  form  of  a  Ph.D.  thesis,  the

electronic versions comes up with two main advantages: 

è It  offers the actual evaluation of input.  This  makes it  possible to actually try out the presented

examples and also to modify them and make one's own experiments.

è It uses hyperlinks to quickly jump from one part of the thesis to another.

Please note that, one needs Mathematica or at least MathReader for accessing the electronic version.

Apart  from floating text,  two main formatting styles of cells  can be found in this thesis: input cells

can be evaluated in the electronic version and look like this:

18 + 7

25

Cells which present Java code appear as a grey box, for instance:

int a = 18;

int b = 7;

System.out.printlnHa+bL;

Introduction 4



Part 1

The Theorema-Java Compiler

1 Computations in the Current Theorema System

In this part of the thesis we want to give a general overview of the Theorema system with a focus on its

computational capabilities. After a short description of the whole system, we will concentrate on the way

computing can be done in the current system. We will show the use of the two classical ways of computa-

tions  in  the  Theorema  system,  namely  the  simple  Compute  command  and  the  more  advanced

ComputationalSession command. The core issue of this thesis is the presentation of a new way to

compute in Theorema by translating one's definitions into executable Java code and calling these com-

piled  and  optimized  algorithms from within Theorema.  For  this,  the  framework of  the  Theorema-Java

Compiler  provides  several  new  commands  (especially  Java–Compute),  which  will  be  presented  in

Chapter 8.

1.1 The Theorema System

The main philosophy of the Theorema system is to provide one logical and software system frame for the

entire  mathematical  exploration  process,  that  includes  the  formulation  of  concepts,  the  mathematical

study  of  their  properties,  the  formulation  of  mathematical  problems,  their  solution  by  algorithms,  the

application  of  algorithms  to  concrete  data  ("computation"),  and  the  systematic  documentation  of  the

exploration  results  in  well  structured  knowledge  bases,  see  [Buch96b],  [Buch96c],  [Buch96d],

[Buch96e], [Buch97], [Buch99c], [Buch00], [Buch04]. In particular, the user of a system like Theorema

need not switch between two systems when changing from proving to programming, or from searching in

knowledge bases to checking the correctness of mathematical statements.

 Theorema is built on top of Mathematica ([Mma]), a popular computer algebra system developed by

Stephen Wolfram. More  specifically, for  keeping Theorema logically self-contained, only the program-

ming language of Mathematica is used for the implementation of Theorema, no usage is made of Mathe-

matica's  algorithm library  (except  if  the  Theorema  user  explicitly  access  algorithms from this  library).

Theorema  is  currently  an  add-on  package  to  Mathematica  and  can  be  loaded  with  the  following

command:

Needs@"Theorema`"D
Mathematica, and hence Theorema as well, is currently supported by a wide range of computer systems:

Windows, Linux, and Mac OS. It also provides an interface to Java, the so-called J/Link, which is a key

feature needed to communicate between Theorema and Java and which is also one of the main motiva-

tions to choose Java as the target language of the compiler (see Section 2.1).



Mathematica, and hence Theorema as well, is currently supported by a wide range of computer systems:

Windows, Linux, and Mac OS. It also provides an interface to Java, the so-called J/Link, which is a key

feature needed to communicate between Theorema and Java and which is also one of the main motiva-

tions to choose Java as the target language of the compiler (see Section 2.1).

The typical mathematical work consists of three general activities: proving, computing, and solving.

Theorema  supports  all  of  them  and  thereby  becomes,  together  with  the  extremely flexible  and  highly

configurable  front-end of  Mathematica,  a  convenient  environment for  the  entire  mathematical explora-

tion process.  Although Theorema puts a special emphasis on proving, its computational capabilities are

also a very important aspect, because whenever you implemented an algorithm, you want, of course, to

try it out on some sample data. It is the main focus of this thesis to improve these computing capabilities

of the current Theorema system.

In  order  to  support  proving,  computing,  and  solving,  Theorema  comes  up  with  its  own  language,

which  is,  in  fact,  a  version  of  higher  order  predicate  logic  without  extensionality  (see  [Buch96a],

[Buch99b]) and, therefore, is built-up of the following objects: constants, variables, terms, formulae, and

quantifiers ([EFT92]).  So, these ingredients form the core of Theorema's language, and they become of

central interest when a definition stated in this language is translated into Java code. We will neither give

a  formal  specification  of  the  Theorema  language,  nor  a  more  detailed  description  of  it,  but  refer  to  a

more general and detailed characterization of the whole Theorema system and its philosophy in [Tma97],

[Buch98c], [Buch99a], [Tma99], [Tma00a], [Tma00b], and [Wind01].

1.2 Computing in Theorema

Theorema offers two different modes for computing: the standard session and the computational session.

The  standard  session,  which is  the  default  mode  when the  Theorema  system is  started,  offers  the  user

command Compute for computing. A call to it has the following form:

Compute@Expression, using ® KnowledgeBaseD
For instance, to compute 18 + 7 in Theorema, you enter:

Compute@18 + 7, using ® XBuilt|in@"Numbers"D\D
25

In this example the knowledge base  only contains the package Built–in["Numbers"],  which is  a

built-in package of Theorema and contains several rewrite rules for natural numbers. As a more involved

example, you may compute the set of all twin primes that are less than 100:

ComputeB:Xi, i + 2\ È
i=1,¼,100

IsPrime@iD ì IsPrime@i + 2D>,
using ® XBuilt|in@"Numbers"D,
Built|in@"Quantifiers"D, Built|in@"Connectives"D\F

8X3, 5\, X5, 7\, X11, 13\, X17, 19\, X29, 31\, X41, 43\, X59, 61\, X71, 73\<

This  time,  the  knowledge  base  contains  the  packages  Built–in["Numbers"],  Built–

in["Quantifiers"] (containing rewrite rules for Theorema's quantifiers, like the SetOf quantifier8 È <), and Built–in["Connectives"] (containing rewrite rules for logical connectives, like ß).
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This  time,  the  knowledge  base  contains  the  packages  Built–in["Numbers"],  Built–

in["Quantifiers"] (containing rewrite rules for Theorema's quantifiers, like the SetOf quantifier8 È <), and Built–in["Connectives"] (containing rewrite rules for logical connectives, like ß).

As  a  last  example,  which also  shows the  flexibility  of  Theorema  and  the  beauty  of  its  syntax,  we

compute  the  set  of  perfect  numbers  that  are  less  than  or  equal  to  500.  A  perfect  number  is  a  positive

integer which is the sum of its proper positive divisors.

ComputeB:i È
i=1,¼,500

â
kÎ:j È

j=1,¼,i-1
jýi>

k = i >,

using ® XBuilt|in@"Numbers"D, Built|in@"Sets"D, Built|in@"Quantifiers"D\F
86, 28, 496<

In contrast to the standard session, computing in a computational session  in Theorema works similar to

working in  Mathematica itself.  In  this  computational mode you can simply enter  the  expression whose

value you want to compute and do not need to put it into a Compute call. The Theorema user language

provides  the  command  ComputationalSession[]  to  enter  a  computational  session  and  the

command EndComputationalSession[] to leave it again. All calls between these two commands

are  directly  interpreted  and  computed by Theorema.  Furthermore, the  philosophy of  the  computational

session is that a  knowledge base is built-up step by step by giving definitions or  by importing environ-

ments that have been previously defined in the standard session ([Wind01]).

To execute the computations from above also in a computational session, we first have to tell Theo-

rema which knowledge base we want to use :

Use@XBuilt|in@"Numbers"D, Built|in@"Sets"D,
Built|in@"Quantifiers"D, Built|in@"Connectives"D\D

Then, we can enter the computational session:

ComputationalSession@D
Theorema  automatically imports  the  knowledge that  we declared  with the  above  Use  command; from

now on, all expressions that we enter are handled by Theorema using this knowledge:

:Xi, i + 2\ È
i=1,¼,100

IsPrime@iD ì IsPrime@i + 2D>
8X3, 5\, X5, 7\, X11, 13\, X17, 19\, X29, 31\, X41, 43\, X59, 61\, X71, 73\<
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:i È
i=1,¼,500

â
kÎ:j È

j=1,¼,i-1
jýi>

k = i >

86, 28, 496<

Finally, we leave the computational session:

EndComputationalSession@D
For further details on both Theorema standard sessions and Theorema computational sessions we refer to

[BuWi98] and [Wind99].
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2 The Problem

Computing in  Theorema's  standard  session  and  computational session (see  Section  1.2)  is  rather  slow,

especially when dealing with big  and  nested  data  structures.  So,  in  order  to  further improve the  Theo-

rema system and  increase  its  versatility and  usability, it  was necessary to  speed-up computations. This

desire finally led to the implementation of the Theorema-Java Compiler, which is the main achievement

of this thesis.

In the following chapters we will describe the key ideas and all details of the Theorema-Java Com-

piler.  It  is  able  to  translate  Theorema  programs  into  equivalent  Java  byte  code  and,  thereby,  makes it

possible to compute in Theorema tremendously faster than in Theorema's standard session and computa-

tional session. The road from an algorithm coded in Theorema's version of predicate logic to an equiva-

lent Java program is long, rocky, and sometimes tricky, because a lot of obstacles have to be overcome.

The  difficulties  in  this  translation  basically  arise  from  the  inherent  differences  between  the  Theorema

language and the Java language, and they lead, in particular, to the following challenges:

è Theorema is not a typed language, Java is. Expressions in Theorema do not have a specific type,

whereas, on the other hand, Java is a strongly-typed programming language requiring all terms

to have a defined type.

è Theorema supports higher order functions, Java does not. Theorema supports functions that take

functions as  parameters,  whereas Java does  not support  methods that take methods as parame-

ters (in fact, this is possible in Java by using its Reflection API, but for efficiency reasons we do

not take this possibility into account). Nevertheless, the Theorema-Java Compiler does support

higher order functions by applying a well known method to introduce such functions in Java: the

method which should be passed as parameter is packed into a method of an object whose class

implements a certain Java interface.

è Theorema  supports  sequence  variables,  Java  does  not.  Sequence  variables  turn  out  to  be

extremely useful  in  practice  since  their  use  increases  the  elegance  and  the  readability  of  pro-

grams. The  current  version of  the Theorema-Java Compiler supports  sequence variables at  the

very end of a pattern, like for instance in f @x, y, z�D  (sequence variables in Theorema are over-

bared,  like z�).  Although this is  a  limitation compared to  the flexible support  of  sequence vari-

ables in Theorema, practice shows that this covers by far most of the cases.

è Theorema and Java are virtually two separated software systems. Nevertheless, it was necessary

to  connect  them  somehow in  order  to  execute  an  algorithm on  the  Java  side  and  transfer  its

result  back  to  Theorema.  In  fact,  Mathematica provides  an  interface  to  Java,  which allows to

instantiate Java  objects  and to  call  Java  methods from within Mathematica. This  interface,  the

so-called J/Link, was one of the reasons for choosing Java as the target language of the compiler.

In the following chapters of this part of the thesis we will give the main concepts of the Theorema-Java

Compiler and also explain all its details. We will clearly and completely illustrate the sophisticated way

the  compiler  combines the  elegance  of  predicate  logic,  which is  provided  in  the  version of  Theorema,

and  the  efficiency of  a  modern,  compiled  programming language,  namely  Java.  In  Chapter  3  we  will

explain explicitly the three-steps procedure which is performed on every Theorema function in order  to

produce its equivalent Java byte code. Chapters 4, 5, 6, and 7 deal with the details of the translation of

abstract data types, the translation of definitions with sequence variables, the translation of higher order

functions, and the translation of functors, respectively.

2 The Problem 9



In the following chapters of this part of the thesis we will give the main concepts of the Theorema-Java

Compiler and also explain all its details. We will clearly and completely illustrate the sophisticated way

the  compiler  combines the  elegance  of  predicate  logic,  which is  provided  in  the  version of  Theorema,

and  the  efficiency of  a  modern,  compiled  programming language,  namely  Java.  In  Chapter  3  we  will

explain explicitly the three-steps procedure which is performed on every Theorema function in order  to

produce its equivalent Java byte code. Chapters 4, 5, 6, and 7 deal with the details of the translation of

abstract data types, the translation of definitions with sequence variables, the translation of higher order

functions, and the translation of functors, respectively.

After all these aspects of the translation are clear, we will describe in Chapter 8 how the user can run

the compiled Java code from within Theorema. The remaining chapters of this part explain further details

of the compiler, namely specific compiler settings and the organization in the file system of both the built-

in Java files of the compiler and the files created by the user.

2.1 Why Did We Choose Java?

Java  is  an  object-oriented,  portable,  and  robust  programming  language  originally  developed  by  Sun

Microsystems  (www.sun.com).  We  chose  it  as  the  target  language  of  the  compiler  for  the  following

reasons:

è Java is nowadays a very popular language. It is modern and fully object-oriented and provides a

huge library of auxiliary classes.

è Mathematica provides an interface to Java, the so-called J/Link. It provides a uniquely seamless

interface to the Java environment and can be used in two ways:

è Instantiate Java classes and call their methods from within Mathematica. The J/Link-

library therefore provides Java classes (especially the class 

com.wolfram.jlink.Expr) to handle Mathematica expressions in Java.

è Call Mathematica functions from within Java. This feature is not used by the compiler.

è The runtime performance of Java is really good, almost as good as C's.

è A Java compiler and the Java virtual machine are downloadable for free from the web-page of

Sun, the inventor of Java.

è Java is platform independent, i.e., the Java virtual machine is available for Windows, Linux, and

Mac OS.

è There is still  an ongoing development of Java by Sun. From time to time a new version of the

compiler is released including new and improved features.

2.2 A Short Summary of Features

The Theorema-Java Compiler comes up with several features and highlights:
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è You may compile virtually any Theorema definition into executable Java code. Particularly, you

may  compile  whole  Theorema  theories  and  definitions  containing  sequence  variables  (see

Chapter 5) and functor definitions (see Chapter 7).  This code runs much faster than computing

within Theorema.

è You may compile Theorema definition once and use the compiled and fast Java program how

many times you want.

è A  special  emphasis  during  the  development  of  the  compiler  was  put  on  the  compilation  of

functors.

è The compilation to Java and the execution of compiled code is completely hidden from the user.

That is, the user does not have to bother about the Java code and, actually, does not even come

into contact with it at all. Nevertheless, the user is free to read the created Java code any time.

Further information on how Java code is stored in the local file system is presented in Chapter

10.

2.3 System Requirements

The  Theorema-Java  Compiler  requires  an  installed  version of  Theorema running on  Mathematica 6  or

higher and an installed Java Development Kit (JDK) 1.5 or higher.

All calculations and time measurements presented in this thesis were performed in Mathematica 6.0.0

and JDK 1.6.0_02  under Windows XP Home (Service Pack 2) on a Mobile DualCore Intel Pentium M

with 1600 MHz and 2GB RAM.

2.4 A First Example

In this section we will show how the compiler is actually used to compile a simple Theorema theory and

how to run the created Java code. In order to use Theorema and the Theorema-Java Compiler, you have

to load the appropriate packages in Mathematica  by the following commands:

Needs@"Theorema`"D
Needs@"Theorema`JavaCompiler`JavaCompiler "̀D

In this example we define the function Merge, which merges two sorted lists such that the resulting list

is again sorted, and a theory containing this definition:

2 The Problem 11



DefinitionB"Merge", any@x, x�, y, y�D,
Merge@Xx�\, X\D = Xx�\
Merge@X\, Xy�\D = Xy�\
Merge@Xx, x�\, Xy, y�\D = ; x\ Merge@Xx�\, Xy, y�\D Ü x < y

y\ Merge@Xx, x�\, Xy�\D Ü otherwise

F

Theory@"MergeTheory",
Definition@"Merge"DD

We can use this theory to compute in Theorema:

Compute@Merge@X4, 20, 30\, X1, 2, 5, 32\D,
using ® XBuilt|in@"Tuples"D, Built|in@"Numbers"D,
Built|in@"Connectives"D, Theory@"MergeTheory"D\D �� AbsoluteTiming

80.1250000, X1, 2, 4, 5, 20, 30, 32\<

So,  the  result  is  X1, 2, 4, 5, 20, 30, 32\,  and  it  took  Theorema  0.125  seconds  to  compute  it.

Now, we may compile this theory using the Theorema-Java Compiler creating a fast Java program. For

this, we provide the command Java–Theory2Java:

Java|Theory2Java@Theory@"MergeTheory"DD
In order to access the Java program which the compiler just created and use it for computations, we first

have to put the theory "MergeTheory" into the knowledge base of the Java-sided execution process:

Java|UseTheories@8"MergeTheory"<D
Finally, we can use the Java program for executing a computation:

Java|Compute@Merge@X4, 20, 30\, X1, 2, 5, 32\DD �� AbsoluteTiming

80.0156250, X1, 2, 4, 5, 20, 30, 32\<

The result is the same as above, but the compiled Java program needed just 0.0156 seconds to produce it.
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3 The Three Steps of Translation

In this chapter we describe the three general steps to translate given Theorema definitions into executable

Java  byte code.  These  steps  are  performed in  all  cases,  no  matter  whether a  single definition,  a  whole

theory including several definitions, or a functor is compiled. The first and the last step are quite simple

to  perform,  whereas  the  second  step  is  more  involved  since  it  includes  quite  challenging  steps,  for

instance, translating sequence variables and higher order function.

In  the  course  of  translating a  given Theorema function (or  functor),  its  Theorema definition is  first

transcribed into an intermediate format rid of pattern matching. In the second step, which is also the core

step  in  the  whole  three-stage  translation,  each  function  definition,  given  in  the  intermediate  format,  is

translated into (well readable) Java source code. The basics of this step are described in Section 3.2. All

the details on how to translate abstract data types, definitions including sequence variables, higher order

function, and functors are described in full detail in the chapters 4, 5, 6, 7, respectively. In the third step,

the Java source code is compiled to byte code using a conventional Java compiler. These three steps are

always performed and, thereby, form the general flow of translation, which is depicted in Figure 3.1.

Figure 3.1: Flow of Translation

3.1 Eliminating Pattern Matching

Pattern matching is a very powerful and flexible tool to process data based on its structure. Its real power

comes  from  matching patterns  and  accordingly  bind  variables  at  the  same  time.  Together  with  condi-

tional execution constructs, pattern matching leads to a very elegant and structured way of programming.

Both Mathematica and Theorema support defining functions using these mechanisms, and the following

example shows how they can be used in Theorema: The function Ind–Plus adds two natural numbers

that are  represented by the following data structure: 0  is represented by the constant Zero,  1  is repre-

sented  by Succ[Zero],  2  by Succ[Succ[Zero]],  3  by Succ[Succ[Succ[Zero]]],  and  so

on.
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DefinitionB"InductivePlus", any@x, yD,
Ind|Plus@x, ZeroD = x
Ind|Plus@x, Succ@yDD = Succ@Ind|Plus@x, yDDF

The function distinguishes two cases that are detected by pattern matching. The first rewrite rule 

Ind|Plus@x, ZeroD = x

only matches if the second parameter is equal to the constant Zero. The second rewrite rule

Ind|Plus@x, Succ@yDD = Succ@Ind|Plus@x, yDD
only matches if the head of the second parameter is equal to the constant Succ.

In order to add the natural numbers 2 and 3, you compute:

Compute@Ind|Plus@Succ@Succ@ZeroDD, Succ@Succ@Succ@ZeroDDDD,
using ® XDefinition@"InductivePlus"D\D

Succ@Succ@Succ@Succ@Succ@ZeroDDDDD

Already this simple example demonstrates the increased elegance and readability of programs which use

pattern  matting for  their  definition.  However,  Java  does  not  support  such mechanisms, and,  hence,  the

first  step on the way of  translating a  Theorema definition into Java code is always to  eliminate pattern

matching. For that, the Theorema-Java Compiler translates the Theorema definitions into an intermediate

language rid  of  pattern  matching. Both  the  intermediate language and  the  Mathematica package which

does  this  elimination were originally developed  by Tudor  Jebelean  ([Jebe07])  and later  adapted  by the

author. The following line shows how the function Ind–Plus from above can be defined in Mathemat-

ica without pattern matching:

Ind|Plus@x_, y_D :=

If@y === Zero, x, If@Head@yD === Succ, Succ@Ind|Plus@x, y@@1DDDDDD;
Instead  of  defining  two  cases  which  are  distinguished  by  the  pattern  of  the  second  parameter  of  the

function,  this  definition  uses  an  If-clause  and  explicitly  checks  the  structure  of  y  by  evaluating

y===Zero and Head[y]===Succ. You may again compute 2 plus 3:

Ind|Plus@Succ@Succ@ZeroDD, Succ@Succ@Succ@ZeroDDDD
Succ@Succ@Succ@Succ@Succ@ZeroDDDDD

The function Ind–Plus coded in the above mentioned intermediate language is:

·DeFun@·sig@"Ind|Plus"D, X_param1, _param2\,
·Conditional@XX·const@ZeroD = _param2, _param1\,X·const@SuccD = ·Head@_param2D, ·Expr@·const@SuccD,X·Expr@·const@Ind|PlusD, X_param1, ·Arg@1, _param2D\D\D\\DD

This  expression  consists  of  4  parts:  The  head  •DeFun  indicates  that  this  is  a  function  definition;

•DePre would indicate a predicate definition. The first part, •sig["Ind–Plus"], states the name of

this  function,  and  the  second  part,  X_param1, _param2\,  states  the  parameter  list.  The  third  part,

•Conditional[…],  defines the  body of  the  function and is  a  list  of  condition-expression pairs;  if  a

condition  holds,  the  corresponding  expression  is  returned.  Accordingly,  in  the  case  of  a  predicate

definition, the body is a list of condition-condition pairs.

3 The Three Steps of Translation 14



This  expression  consists  of  4  parts:  The  head  •DeFun  indicates  that  this  is  a  function  definition;

•DePre would indicate a predicate definition. The first part, •sig["Ind–Plus"], states the name of

this  function,  and  the  second  part,  X_param1, _param2\,  states  the  parameter  list.  The  third  part,

•Conditional[…],  defines the  body of  the  function and is  a  list  of  condition-expression pairs;  if  a

condition  holds,  the  corresponding  expression  is  returned.  Accordingly,  in  the  case  of  a  predicate

definition, the body is a list of condition-condition pairs.

In the remaining part of this section we will explain the elimination of pattern matching in general by

considering a unary function. A function of arity n can be translated by iteratively applying the transcrip-

tion presented below.

The left hand side of the definition of a unary function f  may basically have either the form f@cD
where  c  is  a  constant  symbol,  either  the  form  f@xD  where  x  is  a  variable,  or  the  form

f@C@x1, ..., xnDD,  where  C  is  constructor  (see  Chapter  4)  of  arity  n  and   xi  (for  1 £ i £ n)  is

either  a  constant  symbol,  a  variable,  or  again  a  nested  expression  of  the  form D@ ...D  where D  is  a

constructor. Note that a more flexible shape of function definitions is possible if sequence variables are

used, see Chapter 5.

The general shape of  f  coded in the intermediate language looks like this:

·DeFun@·sig@"f"D, X_param1\, ·Conditional@XXCondition, Expression\\DD
where Condition and Expression are a condition and an expression, respectively, depending on f .

As  stated  above,  we have  to  distinguish three  cases:  If  f  has  the  form f[c] = e  (where e  is  some

expression), Condition has the following value

X·const@cD = _param1, e*\
where  e*  is  the  translation  of  e  into  the  intermediate  format.  If  f  is  of  the  form  f[x]  =  e,

Condition is

Xtrue, e*\
because there is no condition on the parameter, and e*  is again the translation of e into the intermediate

format. If f is of the third shape, f@C@x1, ¼, xnDD = e, the Condition looks like this:

XH·const@CD = ·Head@_param1DL ì T, e*\
e*  is obtained by translating e into the intermediate format and replacing xi  by ·Arg@i, _param1D
(for  all  1 £ i £ n),  a  construct  of  the  intermediate  language  which  accesses  the  i-th  component  of

_param1.  T  is  obtained  by  applying  this  three-folded  case  distinction  recursively  to  x1,  ...,  xn  and

forming  the  conjunction.  To  address  xi  and  formulate  a  condition  on  it,  it  is  also  replaced  by

·Arg@i, _param1D.

For  example,  the  function  definition  f@C@x, D@yD, E@aDDD = e  (where  C,  D,  and  E  are

constructors, a is a constant symbol, and x and y are variables) is translated into the function body
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XH·const@CD = ·Head@_param1DL ì H·const@DD = ·Head@·Arg@2, _param1DDL ìH·const@ED = ·Head@·Arg@3, _param1DDL ìH·const@aD = ·Arg@3, ·Arg@1, _param1DDL, e*\
where  e*  is  obtained  by  translating  e  into  the  intermediate  format  and  replacing  x  and  y  by

·Arg@1, _param1D and ·Arg@2, ·Arg@2, _param1DD, respectively.

This translation is accordingly applied to predicate definitions.

3.2 Creating Java Source Code

The  second  step  on  the  way of  translating a  Theorema  definition  into  executable  Java  code  is  to  turn

definitions in intermediate format into actual Java source code.

Each function and each predicate  (given in intermediate format) is  parsed,  and all  occurring condi-

tions and expressions are  translated into Java code.  Of course,  this process of translation is a  recursive

procedure  since  each  condition  and  each  expression  may again  contain  conditions  and  expressions.  In

other  words,  the  definition  of  a  function,  which  is  made  up  of  nested  conditions  and  expressions,  is

recursively translated into Java code.

Also, since Theorema and Java have different naming conventions (e.g., Theorema allows dashes in

names, Java does  not),  a  renaming of identifiers (variables,  class names, etc.)  has to  be performed: All

appearing language keywords of Java (e.g., while, for, new) are changed by prepending and append-

ing an underscore, and dashes are replaced by underscores, and blanks are eliminated.

The  real  challenge of  this  step  is  the  translation of  language constructs  in  Theorema which do  not

exist  in  Java,  for  instance, sequence variables,  higher order  functions, quantifiers, and functors. To  see

how the  translation of  a  simple function works,  let  us  take  the  example from the  previous  section and

have a look at the body of the function Ind–Plus in intermediate format:

·Conditional@XX·const@ZeroD = _param2, _param1\,X·const@SuccD = ·Head@_param2D, ·Expr@·const@SuccD,X·Expr@·const@Ind|PlusD, X_param1, ·Arg@1, _param2D\D\D\\D
The head of this body is •Conditional, hence, we know that we have to create a branching statement

(if-clause).  Since  we  are  about  to  define  a  function  (•DeFun),  the  •Conditional-expression

contains a tuple of pairs of one condition and one expression, whereas in the case of defining a predicate

it would contain a tuple of pairs of two conditions. In this example the first pair is

X·const@ZeroD = _param2, _param1\
So, we translate the first entry of the tuple into the Java condition (see also the translation of abstract data

types in Chapter 4):

HHHExtendedDataL_param2L.isZeroHLL
The second entry of the tuple, i.e., the value which is returned by Ind–Plus if the condition in the first

tuple entry is fulfilled, is trivially translated into the Java expression
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_param1

In the same way, the second pair

X·const@SuccD = ·Head@_param2D, ·Expr@·const@SuccD,X·Expr@·const@Ind|PlusD, X_param1, ·Arg@1, _param2D\D\D\
is translated into Java code. The translation of the condition is

HHHExtendedDataL_param2L.isSuccHLL
The translation of the expression is

new SuccHind_PlusH_param1,_param2.argH1LLL
Finally,  the  two  conditions  and  the  two  expressions  are  put  together  according  to  the  rules  of

•Conditional. So, the Java code of the function Ind–Plus is:

Data ind_PlusHData _param1,Data _param2L8
if HHHHExtendedDataL_param2L.isZeroHLLL8

return _param1;<��if
if HHHHExtendedDataL_param2L.isSuccHLLL8

return new SuccHind_PlusH_param1,_param2.argH1LLL;<��if<��ind_Plus

In general, the translation of functions and predicates from intermediate format into Java code consists of

three  major  parts:  the  translation  of  conditions,  the  translation  of  expressions,  and  the  translation  of

conditional branchings. Compiling conditions comprises the translation of truth values, logical functions

(AND,  OR,  NOT),  equalities, the "  bounded quantifier, and the $  bounded quantifier. Compiling expres-

sions comprises the translation of tuples, the TupleOf quantifier (X È \),   the SetOf quantifier (8 È <),

the Ú  quantifier, the SuchThat quantifier (æ),  sequence variables, and constants. Many of these transla-

tions involve technical details, like dealing with sequence variables (see Chapter 5), or calling a function

of a certain domain (see Chapter 7). Moreover, special efforts have to be made to translate the bounded

quantifier  constructs,  i.e.,  TupleOf,  SetOf,  ",  $,  Ú,  and  SuchThat,  into  correct  Java  code.  The  created

Java code of a translated quantifier is packed into an auxiliary method named "auxn" (where n is 1,2,3,…

), and this method is called with the appropriate parameters.

In the following sections we will describe in detail the translation of each quantifier into Java source

code.  For this, for each quantifier, we will define a function f  in Theorema-like syntax using a general

form of the quantifier and show its equivalent on the Java side, written in a Java-like syntax.
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3.2.1 The TupleOf Quantifier

Theorema supports  two types of  this  quantifier, which differ in  the range the index variable runs over.

The first type uses a so-called integer range and has the following form:

f@x1, ¼, xnD = [g@i, x1, ¼, xnD È
i=h@x1,¼,xnD,¼,k@x1,¼,xnD c@i, x1, ¼, xnD_

The index variable i runs from the value h@x1, ¼, xnD to the value k@x1, ¼, xnD; if the condition

c@i, x1, ¼, xnD  holds,  the  element  g@i, x1, ¼, xnD  becomes  part  of  the  generated  tuple.  The

compiler  translates  this  function  definition  into  the  following code,  which is  given  here  in  a  Java-like

syntax:

Data fHData param1,¼ ,Data paramnL8
return aux1Hparam1,¼ ,paramn,hHparam1,¼ ,paramnL,kHparam1,¼ ,paramnLL;<��f

Tuple aux1HData param1,¼ ,Data paramn,int auxvar1,int auxvar2L8
Data@D auxvar3 = new Data@auxvar2-auxvar1+1D;
int auxvar4 = 0;

forHint i=auxvar1;i£auxvar_2;i++L
if HcHi,param1,¼ ,paramnLL8

auxvar3@auxvar4D = gHi,param1,¼ ,paramnL;
auxvar4++;<��if

return new TupleHauxvar3,auxvar4L;<��aux1
So,  the  TupleOf  quantifier  with  an  integer  range  is  translated  into  a  separate  auxiliary  method  which

essentially consists of a for loop.

The second type of the TupleOf quantifier uses a so-called set range and has the following form:

f@x1, ¼, xn, SD = [g@i, x1, ¼, xnD È
iÎS

c@i, x1, ¼, xnD_
The index variable i  runs through the values of the set S;  whenever the condition c@i, x1, ¼, xnD
holds, the element g@i, x1, ¼, xnD becomes part of the generated tuple. The compiler translates this

function definition into the following code, which is given again in a Java-like syntax:
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Data fHData param1,¼ ,Data paramn,Data SL8
return aux1Hparam1,¼ ,paramn,SL;<��f

Tuple aux1HData param1,¼ ,Data paramn,Set sL8
int auxvar3 = 0;

int auxvar4 = s.sizeHL;
Data i;

Data@D auxvar1 = new Data@auxvar4D;
forHint auxvar5=0;auxvar5<auxvar4;auxvar5++L8

i = s.argHauxvar5+1L;
if HcHi,param1,¼ ,paramnLL8

auxvar1@auxvar3D = gHi,param1,¼ ,paramnL;
auxvar3++;<��if<��for

return new TupleHauxvar1,auxvar3L;<��aux1
So,  the  TupleOf  quantifier  with a  set  range is  translated into a  separate  auxiliary method which essen-

tially consists of a for loop.

3.2.2 The SetOf Quantifier

The  SetOf  quantifier  is  very similar to  the  TupleOf  quantifier:  instead  of  square  brackets  it  uses curly

brackets, and instead of the Java type Tuple it uses Set.

3.2.3 The Ú Quantifier

The Ú quantifier also comes in two forms: one with an integer range, one with a set range. The first one

has the following shape:

f@x1, ¼, xnD = â
i=h@x1,¼,xnD,¼,k@x1,¼,xnD

c@i,x1,¼,xnD
g@i, x1, ¼, xnD

It is translated into the following code:
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Data fHData param1,¼ ,Data paramnL8
return aux1Hparam1,¼ ,paramn,hHparam1,¼ ,paramnL,kHparam1,¼ ,paramnLL;<��f

BI_Number aux1HData param1,¼ ,Data paramn,int auxvar1,int auxvar2L8
BI_Rational auxvar3 = BI_Rational.ZERO;

forHint i=auxvar1;i£auxvar2;i++L
if HcHi,param1,¼ ,paramnLL

auxvar3 = gHi,param1,¼ ,paramnL;
return auxvar3;<��aux1

The second type of the Ú quantifier, which uses a set range, has the following form:

f@x1, ¼, xn, SD = â
iÎS

c@i,x1,¼,xnD
g@i, x1, ¼, xnD

Its corresponding Java code is:

Data fHData param1,¼ ,Data paramn,Data SL8
return aux1Hparam1,¼ ,paramn,SL;<��f

BI_Number aux1HData param1,¼ ,Data paramn,Set sL8
int auxvar3 = s.sizeHL;
Data i;

BI_Rational auxvar1 = BI_Rational.ZERO;

forHint auxvar4=0;auxvar4<auxvar3;auxvar4++L8
i = s.argHauxvar4+1L;
if HcHi,param1,¼ ,paramnLL

auxvar1 = HBI_RationalLauxvar1.addHgHi,param1,¼ ,paramnLL;<��for
return auxvar1;<��aux1

3.2.4 The SuchThat Quantifier

The SuchThat quantifier(æ)  is  used in explicit  definitions of new function symbols, where it  actually is

only used as an abbreviation for an implicit definition of the new symbol. For example,

"
x

f@xD = æ
y

 Iy2 = xM
is considered as an abbreviation of the formula
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is considered as an abbreviation of the formula

"
x

If@xD2 = xM
Also the SuchThat quantifier comes in two shapes, the one with the integer range looks like this:

f@x1, ¼, xnD = æ
i=h@x1,¼,xnD,¼,k@x1,¼,xnD

c@i,x1,¼,xnD
 g@i, x1, ¼, xnD

It is translated into the following Java code:

Data fHData param1,¼ ,Data paramnL8
return aux1Hparam1,¼ ,paramn,hHparam1,¼ ,paramnL,kHparam1,¼ ,paramnLL;<��f

Data aux1HData param1,¼ ,Data paramn,int auxvar1,int auxvar2L8
forHint i=auxvar1;i£auxvar2;i++L

ifHcHi,x1,¼ ,xnL && gHi,param1,¼ ,paramnLL
return BI_Integer.valueOfHiL;

return null;<��aux1
The second one, which uses a set range, has the following form:

f@x1, ¼, xn, SD = æ
iÎS

c@i,x1,¼,xnD
 g@i, x1, ¼, xnD

It is translated into:

Data fHData param1,¼ ,Data paramn,Data SL8
return aux1Hparam1,¼ ,paramn,SL;<��f

Data aux1HData param1,¼ ,Data paramn,Set sL8
int auxvar1 = S.sizeHL;
Data i;

forHint auxvar2=0;auxvar2<auxvar1;auxvar_2++L8
i = s.argHauxvar3+1L;
ifHcHi,x1,¼ ,xnL && gHi,param1,¼ ,paramnLL

return i;<��for
return null;<��aux1
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3.2.5 The " Quantifier

A typical usage of the " quantifier using an integer range looks like this:

p@x1, ¼, xnD � "
i=h@x1,¼,xnD,¼,k@x1,¼,xnD

c@i,x1,¼,xnD
g@i, x1, ¼, xnD

The Theorema-Java Compiler translates this predicate into the following code:

BooleanData pHData param1,¼ ,Data paramnL8
return convertBooleanToDataHaux1Hparam1,¼ ,paramn,hHparam1,¼ ,paramnL,

kHparam1,¼ ,paramnLLL;<��p
boolean aux1HData param1,¼ ,Data paramn,int auxvar1,int auxvar2L8

forHint i=auxvar1;i£auxvar2;i++L
ifHcHi,x1,¼ ,xnL && !gHi,param1,¼ ,paramnLL

return false;

return true;<��aux1
Using a set range, the " quantifier typically comes in this shape:

p@x1, ¼, xn, SD � "
iÎS

c@i,x1,¼,xnD
g@i, x1, ¼, xnD

The translated code in the Java-like syntax is:
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BooleanData pHData param1,¼ ,Data paramn,Data SL8
return convertBooleanToDataHaux1Hparam1,¼ ,paramn,SLL;<��p

boolean aux1HData param1,¼ ,Data paramn,Set sL8
int auxvar1 = s.sizeHL;
Data i;

forHint auxvar2=0;auxvar2<auxvar1;auxvar2++L8
i = s.argHauxvar2+1L;
ifHcHi,x1,¼ ,xnL && !gHi,param1,¼ ,paramnLL

return false;<��for
return true;<��aux1

3.2.6 The $ Quantifier

The $ quantifier also comes in two forms: one with an integer range, one with a set range. The first one

has the following shape:

p@x1, ¼, xnD � $
i=h@x1,¼,xnD,¼,k@x1,¼,xnD

c@i,x1,¼,xnD
g@i, x1, ¼, xnD

The corresponding code is:

BooleanData pHData param1,¼ ,Data paramnL8
return convertBooleanToDataHaux1Hparam1,¼ ,paramn,hHparam1,¼ ,paramnL,

kHparam1,¼ ,paramnLLL;<��p
boolean aux1HData param1,¼ ,Data paramn,int auxvar1,int auxvar2L8

forHint i=auxvar1;i£auxvar2;i++L
ifHcHi,x1,¼ ,xnL && gHi,param1,¼ ,paramnLL

return true;

return false;<��aux1
The second form is:

p@x1, ¼, xn, SD � $
iÎS

c@i,x1,¼,xnD
g@i, x1, ¼, xnD

Its corresponding code is:
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Its corresponding code is:

BooleanData pHData param1,¼ ,Data paramn,Data SL8
return convertBooleanToDataHaux1Hparam1,¼ ,paramn,SLL;<��p

boolean aux1HData param1,¼ ,Data paramn,Set sL8
int auxvar1 = s.sizeHL;
Data i;

forHint auxvar2=0;auxvar2<auxvar1;auxvar2++L8
i = s.argHauxvar2+1L;
ifHcHi,x1,¼ ,xnL && gHi,param1,¼ ,paramnLL

return true;<��for
return false;<��aux1

3.3 Creating Java Byte Code

The  final  step  of  the  translation  from Theorema  to  Java  is  the  compilation  of  the  created  Java  source

code to Java byte code. This can be done by any available Java compiler which supports the JDK 1.5 or

newer. We recommend to use Sun's compiler since we did all the tests with this one (Sun's JDK 1.6). The

user  must  assure  that  the  Java  compiler  (javac)  is  accessible,  i.e.,  the  system environment  variable

PATH has to be set accordingly. After the Java source files were successfully created, the Theorema-Java

Compiler automatically calls javac to compile all produced source files to Java byte code.
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4 Translation of Abstract Data Types

The  Theorema-Java Compiler  supports  the  translation of   abstract  data  types that  are  defined in  Theo-

rema  into  Java  code.  In  this  part  of  the  thesis  we  show  first  a  simple  example  and  then  explain  the

general  way of  the  translation in  full  detail.  The  original  ideas  and  examples presented  in  this  chapter

were mainly given by Martin Giese ([Gies07]).

4.1 An Example: Plus

This  example is  quite  similar to  the one in Section 3.1;  it  just  uses a  more natural notation. Again, we

define the integers inductively: 0  is represented by the constant Z, 1  is represented by Z+, 2 by Z++, 3

by Z+++, etc. Please note that an expression of the form T+  is internally stored as SuperPlus@TD, for

every expression T .  Similarly, an  expression of  the form T + S   (for  expression S  and T)  is  internally

stored  as  Plus@S, TD.  For  instance,  the  addition  2+3  is  represented  by  the  expression  Z++ + Z+++,

which  is  internally  stored  as

Plus@SuperPlus@SuperPlus@ZDD, SuperPlus@SuperPlus@SuperPlus@ZDDDD.

Here is the definition of the function Plus and the associated theory:

DefinitionB"Plus", any@x, yD,
x + Z = x

x + y+ = Hx + yL+F
Theory@"Plus",

Definition@"Plus"DD
If we, for instance, want to add 2 and 3, we simply compute

ComputeAZ++ + Z+++
, using ® XTheory@"Plus"D\E

JIIHZ+L+M+M+N+

To compile this Theorema theory to Java we have to enter

Java|Theory2Java@Theory@"Plus"DD
In  the  second  step  of  the  general,  three-stage  flow  of  translation  (see  Chapter  3)  the  compiler  has  to

create a Java-sided representation of the constant symbol Z and of the unary symbol SuperPlus, which

is the internal representation of +.  The symbols Z  and SuperPlus  are called constructors,  which are

generally represented by Java classes. What can these classes look like? At this point, typecasting plays a

crucial rôle.  In the current design of the Theorema-Java Compiler the type of all parameters of all user

defined functions has to be Data, which is an abstract class provided by the framework of the Theorema-

Java Compiler, see Section 10.2.1. Since Z is a possible parameter of the function Plus,  the representa-

tion  of  the  constant  Z  on  the  Java  side  has  to  be  a  class  that  is  a  subclass  of  Data.  Accordingly, the

representation of SuperPlus is a class that is also a subclass of Data and has a constructor taking one

parameter of type Data. Actually, these representation classes are not direct subclasses of Data, but are

derived from the intermediate, abstract class ExtendedData,  which is directly subclassing Data and

also created automatically by the compiler.
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In  the  second  step  of  the  general,  three-stage  flow  of  translation  (see  Chapter  3)  the  compiler  has  to

create a Java-sided representation of the constant symbol Z and of the unary symbol SuperPlus, which

is the internal representation of +.  The symbols Z  and SuperPlus  are called constructors,  which are

generally represented by Java classes. What can these classes look like? At this point, typecasting plays a

crucial rôle.  In the current design of the Theorema-Java Compiler the type of all parameters of all user

defined functions has to be Data, which is an abstract class provided by the framework of the Theorema-

Java Compiler, see Section 10.2.1. Since Z is a possible parameter of the function Plus,  the representa-

tion  of  the  constant  Z  on  the  Java  side  has  to  be  a  class  that  is  a  subclass  of  Data.  Accordingly, the

representation of SuperPlus is a class that is also a subclass of Data and has a constructor taking one

parameter of type Data. Actually, these representation classes are not direct subclasses of Data, but are

derived from the intermediate, abstract class ExtendedData,  which is directly subclassing Data and

also created automatically by the compiler.

Figure 4.1 shows the UML class diagram of these classes. In this figure, the Data class is colored in

grey since it is not created automatically in the flow of translation, but provided by the framework of the

Theorema-Java  Compiler.  The  three  other  classes,  which  are  created  completely  automatically  by  the

compiler, are colored in black.

Figure 4.1: UML Diagram of the Classes of the Theory "Plus"

We  will  now  present  the  actual  implementation  of  the  representation  classes,  according  to  the  class

model in Figure 4.1. The first Java class which is created is ExtendedData. It is an abstract class and

a  direct  subclass  of  Data.  Moreover,  it  contains identifying methods for  its  two possible  implementa-

tions, namely the class Z and the class SuperPlus. That is, it contains boolean, non-abstract functions

isZ and isSuperPlus, which both return false in their implementation in ExtendedData.
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public abstract class ExtendedData extends Data8
public boolean isZHL8

return false;<��isZ
public boolean isSuperPlusHL8

return false;<��isSuperPlus<��class ExtendedData

The  class  Z  is  a  direct  subclass  of  ExtendedData  and  overloads  the  function  isZ,  which  returns

true in the class Z. Furthermore, it implements the function equal (and also others which are omitted

here for the sake of simplicity), which is (are) inherited from Data.

public class Z extends ExtendedData8
public boolean isZHL8

return true;<��isZ
public boolean equalHData xL8

if Hx instanceof ExtendedDataL8
return HHHExtendedDataLxL.isZHLL;<��if

else8
return false;<��else<��equal

...

<��class Z

The class SuperPlus is also a direct subclass of ExtendedData but overloads the function isSu-

perPlus,  which  returns  true  in  the  class  SuperPlus.  Like  the  class  Z,  it  has  to  implement  the

function equal  (and also others which are again omitted here for the sake of simplicity), because it is

(are) inherited from the abstract class Data.
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public class SuperPlus extends ExtendedData8
private Data arg1;

public SuperPlusHData arg1L8
this.arg1=arg1;<��SuperPlus

public boolean isSuperPlusHL8
return true;<��isSuperPlus

public Data argHint nL8
if Hn�1L8

return arg1;<��if
return null;<��arg

public boolean equalHData xL8
if Hx instanceof ExtendedDataL8

return HHHExtendedDataLxL.isSuperPlusHL&&
argH1L.equalHHHSuperPlusLxL.argH1LLL;<��if

else8
return false;<��else<��equal

...

<��class SuperPlus

The  classes Z  and SuperPlus  can  now be  used to  express the chosen data  structure.  Given the Java

classes above, we can, for instance, create the object Z+++
 (representing the natural number 3) as a Java

object:

new SuperPlusHnew SuperPlusHnew SuperPlusHnew ZeroHLLLL
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As the  final  step,  we have to  translate  the  algorithm Plus  into  Java  source  code.  Generally,  all  algo-

rithms of a theory are collected in the class Algorithms. As shown in Section 3.2, each rewrite rule in

the Theorema definition of Plus  is translated (via the intermediate language) into an if-clause on the

Java side. The signature of the Java implementation of Plus is

Data plusHData _param1,Data _param2L
The first rewrite rule in the definition of Plus

x + Z = x

is translated into

if HHHHExtendedDataL_param2L.isZHLLL8
return _param1;<��if

Accordingly, the second rewrite rule

x + y+ = Hx + yL+

is translated into

if HHHHExtendedDataL_param2L.isSuperPlusHLLL8
return new SuperPlusHplusH_param1,_param2.argH1LLL;<��if

Hence, the whole Algorithms class looks like this:

public class Algorithms8
public static Data plusHData _param1,Data _param2L8

if HHHHExtendedDataL_param2L.isZHLLL8
return _param1;<��if

if HHHHExtendedDataL_param2L.isSuperPlusHLLL8
return new SuperPlusHplusH_param1,_param2.argH1LLL;<��if

return null;<��plus<��class Algorithms

This is the well structured and well readable Java source code which the Theorema-Java Compiler finally

created and compiled to Java byte code.  If we want to use it  for computations, we first have to put the

theory "Plus" into the knowledgebase of the Java-sided execution process:
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This is the well structured and well readable Java source code which the Theorema-Java Compiler finally

created and compiled to Java byte code.  If we want to use it  for computations, we first have to put the

theory "Plus" into the knowledgebase of the Java-sided execution process:

Java|UseTheories@8"Plus"<D
We may now compute 2+3:

Java|ComputeAZ++ + Z+++E
JIIHZ+L+M+M+N+

Before  describing  the  details  of  the  general  aspects  of  this  translation  in  the  next  section,  we want  to

easily broaden the above example by adding another algorithm, namely multiplication. Thus, we define

the multiplication in our inductive data structure:

DefinitionB"Times", any@x, yD,
x*Z = Z
x*y+ = x*y + x
Z*y = Z
x+ *y = y + x*y

F

TheoryB"Plus|Times",

Definition@"Plus"D
Definition@"Times"DF

We may compute (1+2)*3:

ComputeAIZ+ + Z++M *Z+++
, using ® XTheory@"Plus|Times"D\E

KJIIHZ+L+M+M+N+O
+ + + +

The result is, as expected, 9. Let us compile the theory and have a look at its corresponding Java source

code:

Java|Theory2Java@Theory@"Plus|Times"DD
The  thereby  created  class  Algorithms  is  identical  to  the  one  shown  above  except  that  it  has  an

additional method times:
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public static Data timesHData _param1,Data _param2L8
if HHHHExtendedDataL_param2L.isZHLLL8

return ExtendedFactory.getZHL;<��if
if HHHHExtendedDataL_param2L.isSuperPlusHLLL8

return plusHtimesH_param1,_param2.argH1LL,_param1L;<��if
if HHHHExtendedDataL_param1L.isZHLLL8

return ExtendedFactory.getZHL;<��if
if HHHHExtendedDataL_param1L.isSuperPlusHLLL8

return plusH_param2,timesH_param1.argH1L,_param2LL;<��if
return null;<��times

Again, we may now compute using the compiled Java code:

Java|UseTheories@8"Plus|Times"<D
Java|ComputeAIZ+ + Z++M *Z+++E

KJIIHZ+L+M+M+N+O
+ + + +

4.2 General Translation

In  the  previous  section  we exemplarily presented  Theorema  programs  which work  on  a  data  structure

that is built by so-called constructor terms, and we showed its corresponding Java source code. We will

now explain the translation of such Theorema programs into Java source code in full generality.

The  idea for  the current way of translation of such programs was given by Martin Giese,  [Gies07],

and is a general concept which associates to each type of constructor term a Java class. A constructor is a

constant symbol with a certain arity and a name that is different from all the names of algorithms in the

current  knowledge base.  Please  note  that  also  the  angle brackets  (X…\)  can  be  viewed as  constructors,

but with an arbitrary arity. A common example of a data structure using constructors are Lisp-style lists:

Given  the  0-ary  constructor  nil  and  the  binary  constructor  cons,  we  can  easily  construct  lists  of

arbitrary length, e.g.,  the term cons[18,cons[0,cons[7,nil]]]  is  the representation of the listX18,0,7\.  Another  example  is  the  representation  of  multivariate  polynomials:  Given  the  binary

constructor  Mon  and  the  n-arity  constructor  PP,  we  can  represent  polynomials  in  n  variables.  For

instance,  the  polynomial  7 x2 y z3 - 2 y z + 5 z  can  be  represented  by  the  tupleXMon[7,PP[2,1,3]],Mon[-2,PP[0,1,1]],Mon[5,PP[0,0,1]]\.

Given a Theorema theory, we can extract both the occurring constructors and the defined algorithms.

Hence, in the general, three-part flow of translation (see Chapter 3), the compiler now has to do more in

Step  2:  beside  translating the  algorithms into  Java  source  code,  it  has  to  create  a  representation  of  all

occurring  constructors.  In  the  course  of  this  these  constructors  are  divided  into  two  parts:  the  0-ary

constructors C0,1, ¼ , C0,n0
 and the constructors Ci,1, ¼ , Ci,ni

 of arity i  and i > 0.  In the current imple-

mentation of the compiler each constructor is represented by a Java class, which is automatically created

when the associated Theorema theory is compiled. All these Java classes are derived from the intermedi-

ate  class ExtendedData,  which is  abstract  and directly derived  from Data  (provided  by the frame-

work of  the  Theorema-Java  Compiler,  see  Section  10.2.1).  ExtendedData  is  also  created  automati-

cally and contains identifying methods for each constructor class.

Figure 4.2 shows the over-all class design as an UML class diagram. For the sake of clarity, for each

of the two types of constructors, namely the 0-ary ones and the non-zero-ary ones, only one representa-

tive class is depicted: the class C0,j stands for a 0-ary constructor, the class Ci,j stands for a constructor

of  arity  i  with  i > 0.  Furthermore,  the  Data  class  is  colored  in  grey  to  indicate  that  it  is  not  created

automatically in the flow of translation, but provided by the framework of the Theorema-Java Compiler.

The figure schematically shows several properties of the automatically generated classes:
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The idea for  the current way of translation of such programs was given by Martin Giese,  [Gies07],

and is a general concept which associates to each type of constructor term a Java class. A constructor is a

constant symbol with a certain arity and a name that is different from all the names of algorithms in the

current  knowledge base.  Please  note  that  also  the  angle brackets  (X…\)  can  be  viewed as  constructors,

but with an arbitrary arity. A common example of a data structure using constructors are Lisp-style lists:

Given  the  0-ary  constructor  nil  and  the  binary  constructor  cons,  we  can  easily  construct  lists  of

arbitrary length, e.g.,  the term cons[18,cons[0,cons[7,nil]]]  is  the representation of the listX18,0,7\.  Another  example  is  the  representation  of  multivariate  polynomials:  Given  the  binary

constructor  Mon  and  the  n-arity  constructor  PP,  we  can  represent  polynomials  in  n  variables.  For

instance,  the  polynomial  7 x2 y z3 - 2 y z + 5 z  can  be  represented  by  the  tupleXMon[7,PP[2,1,3]],Mon[-2,PP[0,1,1]],Mon[5,PP[0,0,1]]\.

Given a Theorema theory, we can extract both the occurring constructors and the defined algorithms.

Hence, in the general, three-part flow of translation (see Chapter 3), the compiler now has to do more in

Step  2:  beside  translating the  algorithms into  Java  source  code,  it  has  to  create  a  representation  of  all

occurring  constructors.  In  the  course  of  this  these  constructors  are  divided  into  two  parts:  the  0-ary

constructors C0,1, ¼ , C0,n0
 and the constructors Ci,1, ¼ , Ci,ni

 of arity i  and i > 0.  In the current imple-

mentation of the compiler each constructor is represented by a Java class, which is automatically created

when the associated Theorema theory is compiled. All these Java classes are derived from the intermedi-

ate  class ExtendedData,  which is  abstract  and directly derived  from Data  (provided  by the frame-

work of  the  Theorema-Java  Compiler,  see  Section  10.2.1).  ExtendedData  is  also  created  automati-

cally and contains identifying methods for each constructor class.

Figure 4.2 shows the over-all class design as an UML class diagram. For the sake of clarity, for each

of the two types of constructors, namely the 0-ary ones and the non-zero-ary ones, only one representa-

tive class is depicted: the class C0,j stands for a 0-ary constructor, the class Ci,j stands for a constructor

of  arity  i  with  i > 0.  Furthermore,  the  Data  class  is  colored  in  grey  to  indicate  that  it  is  not  created

automatically in the flow of translation, but provided by the framework of the Theorema-Java Compiler.

The figure schematically shows several properties of the automatically generated classes:

è For  every  occurring  constructor  the  class  ExtendedData  contains  an  identifying  boolean

method isCi,j (i ³ 0, 1 £ j £ ni) which yields false.

è The class C0,j,  representing a constructor of arity zero,  overwrites ExtendedData's method

isC0,j  by a method returning true. By necessity, the class C0,j  also implements the methods

arg and equal, which are inherited from the abstract class Data.

è The  class  Ci,j,  representing  a  constructor  of  arity  i Hi > 0L,  overwrites  ExtendedData's

method isCi,j  by a method returning true. By necessity, the class Ci,j  also implements the

methods arg  and  equal,  which are  inherited from the  abstract  class  Data.   Furthermore, it

contains i private fields of type Data and a constructor of arity i.
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Figure 4.2: UML Diagram for the Classes of a General Theory

4.3 Time Measurements

As  a  first  demonstration  of  the  Theorema-Java  Compiler's  power,  we  will  now  show  the  tremendous

speed-up it can achieve. Using again the representation of natural numbers given in Section 4.1, we want

now to compute values of the following mathematical function Binom4:

Binom4@n, mD = KK n
m

O mod 4O
A  recursive  definition  of  this  function,  using  the  well  known  identity  

n

m
=

n - 1

m - 1
+

n - 1
m

 for

n, m > 0, is:

Binom4@n, mD =
1 Ü m = 0
1 Ü n = mHBinom4@n - 1, m - 1D + Binom4@n - 1, mDL mod 4 Ü otherwise

A possible Theorema implementation of this function working on the above mentioned representation of

natural numbers is:
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DefinitionB"Mod4", any@xD,
Mod4Bx++++F = Mod4@xD
Mod4@xD = x

F

DefinitionB"Binom4", any@n, mD,
Binom4@n, ZD = Z+

Binom4@n, nD = Z+

Binom4@n+, m+D =

Mod4@Binom4@n, mD + Binom4@n, m+DD
F

The theory "Binom4" collects the definitions of Mod4, Binom4, and Plus (the latter one is taken from

Section 4.1):

TheoryB"Binom4",
Definition@"Plus"D
Definition@"Mod4"D
Definition@"Binom4"DF

We may now compile this theory to Java by

Java|Theory2Java@Theory@"Binom4"DD
and also load it:

Java|UseTheories@8"Binom4"<D
As a first example we want to compute Binom4[15,7]. Using the Mathematica built-in functions Mod

and Binomial, we find that:

Mod@Binomial@15, 7D, 4D
3

For computing Binom4[15,7] in a computational session of Theorema, we execute:

ComputationalSession@D
Use@XTheory@"Binom4"D\D
Binom4BZ+++++++++++++++

, Z+++++++F �� AbsoluteTiming

EndComputationalSession@D
90.3437500, IHZ+L+M+=

The same computation on the Java side is achieved by
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Java|ComputeBBinom4BZ+++++++++++++++

, Z+++++++FF �� AbsoluteTiming

90.0156250, IHZ+L+M+=

Hence,  the  speed-up  factor  in  this  example  is  about  20.  As  a  second  example,  let  us  compute

Binom4[19,9]. Mathematica tells us

Mod@Binomial@19, 9D, 4D
2

In a Theorema computational session we get

ComputationalSession@D
Use@XTheory@"Binom4"D\D

Binom4BZ+++++++++++++++++++

, Z+++++++++F �� AbsoluteTiming

EndComputationalSession@D
94.8906250, HZ+L+=

Using the compiled version of the algorithms we are much faster:

Java|ComputeBBinom4BZ+++++++++++++++++++

, Z+++++++++FF �� AbsoluteTiming

90.0468750, HZ+L+=

In this example the execution is around 100 times faster on the Java side than in a computational session

of Theorema. Table  4.1  shows further time measurements with the function Binom4.  The first column

of this table states the computation task, and the second and third column state the numbers of seconds

needed  for  the  execution  of  the  corresponding  original  Theorema  code  and  the  compiled  one,  respec-

tively. The fourth column gives the speed-up factor of the compiled program with respect to the original

Theorema program.

Task Theorema Compiled Theorema Speed - up Factor

Binom4@15, 7D 0.33 s 0.02 s 17

Binom4@17, 8D 1.27 s 0.02 s 64

Binom4@19, 9D 4.8 s 0.06 s 80

Binom4@21, 10D 18.39 s 0.19 s 97

Binom4@25, 12D 269.48 s 2.7 s 100

Table 4.1: Time Measurements of Binom4
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5 Translation of Sequence Variables

Sequence variables,  which are  variables  for  which an  arbitrary  finite  number (including zero)  of  terms

can be substituted, add expressiveness and elegance to the Theorema language. For  example, all  of the

following  terms  match  the  pattern  Xm, m\:  X3\, X3, a\, X3, a, a, b\, X5, 3, X2, 3\\.  However,  the  empty

tuple  X\  does  not  match  Xm, m\.  Together  with  pattern  matching,  sequence  variables  turn  out  to  be

extremely useful in  practice  and lead  to  well structured and well readable  programs in  predicate  logic.

The  problem  of  translating  sequence  variables  from  Theorema  to  Java  is  that  such  variables  are  not

supported  by  the  Java  language.  Therefore,  we  had  to  come  up  with  a  mechanism  which  imitates

sequence variables on the Java side. This chapter is about this mechanism and how the actual translation

works. Please note that, although sequence variables with all  conceivable flexibility are fully supported

by  the  Theorema  language,  only  a  certain  type  of  patterns  is  supported  by  the  current  version  of  the

Theorema-Java Compiler, namely only patterns with one sequence variable at the very end of the pattern.

For  example,  the  compiler  is  able  to  translate  the  pattern  Xm, m\,  but  it  does  not  support  the  pattern

Xm, m\.  Although,  at  first  sight,  this  looks  like  a  severe  limitation  of  the  compiler   compared  to  the

flexible support  of sequence variables in Theorema,  practice shows that sequence variables are  mostly

used in exactly those kinds of patterns that are supported by the compiler.

The original ideas for translating sequence variables to Java were mainly given by Bruno Buchberger

([Buch07a]).

5.1 An Example: InsertOrdered

Before  describing  the  above  mentioned  mechanism and  the  general  way sequence  variables  are  trans-

lated,  we want to  show the  usage of  sequence variables  and  the  corresponding  Java  source  code  in  an

example, namely the algorithm InsertOrdered, which inserts an element in a sorted list such that the

list stays sorted. Here is the definition of the function InsertOrdered and the associated theory:

DefinitionB"InsertOrdered", any@x, y, y�D,
InsertOrdered@x, X\D = Xx\
InsertOrdered@x, Xy, y�\D = ; x\InsertOrdered@y, Xy�\D Ü x < y

y\InsertOrdered@x, Xy�\D Ü otherwise

F

Theory@"InsertOrderedTheory",
Definition@"InsertOrdered"DD

The first parameter of this function is the element to be inserted into the list which is given in the second

parameter. The function is defined by two rewrite rules which are distinguished by pattern matching on

the structure of the second parameter: If the list (the second parameter) is empty, the singleton tuple with

the first parameter is returned. If the list has at least one element, two cases are distinguished depending

on the relative order of the first parameter and the first element of the list.

Let us look at two computations in Theorema (we have to add the packages for tuples and, because of

the case distinction, for connectives to our knowledge base) :
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Compute@InsertOrdered@13, X\D, using ® XBuilt|in@"Tuples"D,
Built|in@"Connectives"D, Theory@"InsertOrderedTheory"D\D

X13\

Compute@InsertOrdered@13, X1, 6, 9, 14, 20, 99\D,
using ® XBuilt|in@"Tuples"D,
Built|in@"Connectives"D, Theory@"InsertOrderedTheory"D\D

X1, 6, 9, 13, 14, 20, 99\

To compile this Theorema theory to Java, we have to enter

Java|Theory2Java@Theory@"InsertOrderedTheory"DD
The Java code of the function InsertOrdered looks like this:

public static Data insertOrderedHData _param1,Data _param2L8
if HHBI_Tuple.IsTupleH_param2L&&HHHTupleL_param2L.sizeHL�0LLL8

return new TupleHnew Data@D8_param1<L;<��if
if HHBI_Tuple.IsTupleH_param2L&&HHHTupleL_param2L.sizeHL³1LLL8

if HRationals.lessH_param1,_param2.argH1LLL8
return BI_Tuple.prependH_param1,HTupleLinsertOrderedH_param2.argH1L,
BI_Tuple.createTupleHnew Data@D8

BI_Tuple.restAsSequenceHHTupleL_param2L<LLL;<��if
return BI_Tuple.prependH_param2.argH1L,HTupleLinsertOrderedH_param1,

BI_Tuple.createTupleHnew Data@D8
BI_Tuple.restAsSequenceHHTupleL_param2L<LLL;<��if

return null;<��insertOrdered
Please note the following features of this code:

è The first if-clause matches, if the second parameter is an empty tuple. This clause corresponds

precisely to the first rewrite rule of the Theorema definition of the function:

InsertOrdered@x, X\D = Xx\
è The  second  if-clause  matches,  if  the  second  parameter  is  a  tuple  (BI_Tuple.Is-

Tuple(_param2))  with at  least  one element (((Tuple)_param2).size()³1).  This  is

exactly  what  the  left  hand  side  of  the  second  rewrite  rule  of  the  Theorema  definition  of  the

function tells us:
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è

The  second  if-clause  matches,  if  the  second  parameter  is  a  tuple  (BI_Tuple.Is-

Tuple(_param2))  with at  least  one element (((Tuple)_param2).size()³1).  This  is

exactly  what  the  left  hand  side  of  the  second  rewrite  rule  of  the  Theorema  definition  of  the

function tells us:

InsertOrdered@x, Xy, y�\D = ; x\InsertOrdered@y, Xy�\D Ü x < y

y\InsertOrdered@x, Xy�\D Ü otherwise

è The inner if-clause uses the function less of the class Rationals. The Theorema predicate

<  is  automatically  translated  in  this  way  because  the  default  domain  for  <  is  the  domain  of

rational numbers, which is implemented in the Java class Rationals (see Section 9.1).

è The  class  BI_Tuple  provides  the  functions  restAsSequence,  which  extracts  all  but  the

last  elements  of  a  tuple,  and  createTuple,  which  forms  a  tuple  out  of  an  array  of  Data

elements. Used  together  in  the  way shown in  the  example code  above,  they provide  a  way of

expressing sequence variables in Java.

We can now load the theory "InsertOrderedTheory":

Java|UseTheories@8"InsertOrderedTheory"<D
and then use the compiled code for computations:

Java|Compute@InsertOrdered@13, X\DD
X13\

Java|Compute@InsertOrdered@13, X1, 6, 9, 14, 20, 99\DD
X1, 6, 9, 13, 14, 20, 99\

5.2 General Translation

The translation of  sequence variables into an equivalent mechanism in Java needs handling in all  three

stages of the general flow of translation (see Chapter 3). The intermediate language (see also Chapter 3),

originally  design  by  Tudor  Jebelean,  had  to  be  extended  by  the  author  to  also  cope  with  sequence

variables.  Additionally, in  the  second step  of  the  flow special  rules  have to  be  applied  to  handle these

extensions  correctly.  And  furthermore,  the  Java-sided  framework  of  the  Theorema-Java  Compiler

provides auxiliary methods to deal with these sequence-imitating structures.

5.2.1 Modifications of the Intermediate Language

The  procedure  of  pattern  matching  elimination  and  the  associated  intermediate  language  (see  Section

3.1) did originally not support sequence variables. The author added this functionality such that sequence

variables are now conveniently translated into the intermediate language and, therefore, ready for being

processed further.

A typical definition of a Theorema function (or predicate) which uses a sequence variable looks like

this: f@Xx1, ¼, xn, s
�\D = e.  (Please  note  again  that  this  is  the  only  way sequence  variables  are

supported by the current version of the Theorema-Java Compiler, namely a  single sequence variable at

the  very  end  of  the  pattern;  see  the  beginning  of  this  chapter.)  xi  (for  1 £ i £ nL  is  either  a  constant

symbol, either a normal (i.e., non sequence) variable, or a nested expression of the form D@¼D for some

constructor D. The expression e is the body of f  and is defined in terms of xi (for 1 £ i £ nL and s�. The

function  f coded in the intermediate language looks like this:
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A typical definition of a Theorema function (or predicate) which uses a sequence variable looks like

this: f@Xx1, ¼, xn, s
�\D = e.  (Please  note  again  that  this  is  the  only  way sequence  variables  are

supported by the current version of the Theorema-Java Compiler, namely a  single sequence variable at

the  very  end  of  the  pattern;  see  the  beginning  of  this  chapter.)  xi  (for  1 £ i £ nL  is  either  a  constant

symbol, either a normal (i.e., non sequence) variable, or a nested expression of the form D@¼D for some

constructor D. The expression e is the body of f  and is defined in terms of xi (for 1 £ i £ nL and s�. The

function  f coded in the intermediate language looks like this:

·DeFun@·sig@"f"D, X_param1\,
·Conditional@XXH·const@ÔTupleD = ·Head@_param1DL ìH·TupleSize@_param1D ³ nL ì T, e*\\DD

The first condition in the conjunction expresses that the parameter of f  has to be a tuple. The second one

says  that  the  length  of  this  tuple  has  to  be  at  least  n  (because  the  sequence  variable  s�  in

f@Xx1, ¼, xn, s
�\D  matches sequences  of  any length including zero).  T  is  obtained  by recursively

applying the methods of Section 3.1  and this section to  all  xi  (for  1 £ i £ n)  and forming the conjunc-

tion. e*  results from replacing s� in e  by ·seq|rest@_param1, nD,   expressing that s� is obtained

from _param1 by dropping the first n elements.

If the function definition has the simple shape f@Xs�\D = e, the translation of f is even easier:

·DeFun@·sig@"f"D, X_param1\,
·Conditional@XXH·const@ÔTupleD = ·Head@_param1DL, e*\\DD

e* results from replacing s� in e by ·seq@_param1D.

5.2.2 Modifications of the Compiler

In  the  previous  chapter  we  introduced  two  new  constructs  of  the  intermediate  language:  •seq  and

•seq–rest.  We  now  present  the  necessary  adaptions  of  the  Theorema-Java  Compiler  in  order  to

handle these statements and produce the corresponding Java source code. •seq[e], for some expres-

sion e, is translated into

HHTupleLe*L.asSequenceHL
where e* is the translation of  e and asSequence() is a method of the Java class Tuple, see also the

next section. ·seq|rest@_param1, nD, for some expression e and some integer n, is translated into

BI_Tuple.restAsSequenceHHTupleLe*,nL

where e*  is the translation of e and restAsSequence is a method of the Java class BI_Tuple, see

also the next section.

Additionally  to  these  two  adaption,  the  compiler  has  now  to  distinguish  two  cases:  First,  a  tuple

(given in its intermediate language representation with ti being expressions)
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·Expr@·const@ÔTupleD, ÔTuple@t1, ¼, tnDD
which is free of •seq and •seq–rest is translated into

new TupleInew Data@D9t1*,¼ ,tn
*=M

where ti* is the translation of ti (for 1 £ i £ n). Secondly, if a tuple is not free of •seq and •seq–rest,

it is translated into

BI_Tuple.createTupleInew Data@D9t1*,¼ ,tn
*=M

where again ti* is the translation of ti (for 1 £ i £ n).

5.2.3 Modifications of the Java Framework

As already  indicated  in  the  previous  chapter,  the  framework of  the  Theorema-Java  Compiler  provides

three methods for supporting sequence variables. The first one is asSequence() of the class Tuple:

public Sequence asSequenceHL8
return new SequenceHjlsL;<��asSequence

jls is a global Data array which holds all the entries of the tuple. So, this method simply encapsulates

the data of the tuple in a Sequence  object.  The second method is restAsSequence  defined in the

class BI_Tuple as

static public Sequence restAsSequenceHTuple t,int nL8
Data@D s = new Data@t.sizeHL-nD;
for Hint i=n;i<t.sizeHL;i++L s@i-nD=t.argHi+1L;

return new SequenceHsL;<��restAsSequence
It encapsulates the entries of t starting with the n+1st entry in a Sequence object. Finally, the method

createTuple, which is also defined in the class BI_Tuple, does the real work:
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static public Tuple createTupleHData@D jlsL8
ArrayList<Data> al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
forHint i=0;i<jls.length;i++L8

if Hjls@iD instanceof SequenceL8
forHint j=0;j<HHSequenceLjls@iDL.sizeHL;j++L

al.addHHHSequenceLjls@iDL.argHj+1LL;<��if
else

al.addHjls@iDL;<��for
ts=al.toArrayHtsL;
return new TupleHtsL;<��createTuple

This method takes an array of Data  objects  and creates a new tuple with the entries of the array, only

that entries of sequences are flattened. Let us have a look at the following example code:

Sequence s = new SequenceHnew Data@D8BI_Integer.valueOfH18L,BI_Integer.valueOfH7L<L;
createTupleHnew Data@D8s,BI_Integer.valueOfH79L<L

An instance s of the class Sequence is declared having the two entries

BI_Integer.valueOf(18) and BI_Integer.valueOf(7). Then, the method

BI_Tuple.createTuple is called and a Data array containing s and

BI_Integer.valueOf(79)  is  passed  to  it.  The  return  value of  this  call  is  a  tuple  of  length three

having the entries BI_Integer.valueOf(18),

BI_Integer.valueOf(7), and BI_Integer.valueOf(79). So, the sequence s was flattened,

and the element BI_Integer.valueOf(79) was appended.

5.3 Time Measurements

Extending the very first example of this part of the thesis (see Section 2.4),  we will now implement the

well  known  mergesort  algorithm  in  Theorema,  compile  it  to  Java,  and  compare  the  runtime  of  some

examples in both variants. For this, we need the following three functions:

è Merge: It takes two sorted lists of integers and merges them such that the resulting list is again

sorted. For instance, Merge[X1,3,5\,X2,4\] returns X1,2,3,4,5\.

è SplitList:  It  takes  one  list,  splits  it  into  two  halves,  and  returns  a  list  containing  these

halves. For instance, SplitList[X1,2,3,4,5\] returns XX1,2\,X3,4,5\\.

è MergeSort:  This  function  implements  the  mergesort  algorithm.  For  instance,

MergeSort[X18,7,79,19\] returns X7,18,19,79\.
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è

MergeSort:  This  function  implements  the  mergesort  algorithm.  For  instance,

MergeSort[X18,7,79,19\] returns X7,18,19,79\.

DefinitionB"Merge", any@x, x�, y, y�D,
Merge@Xx�\, X\D = Xx�\
Merge@X\, Xy�\D = Xy�\
Merge@Xx, x�\, Xy, y�\D = ; x\ Merge@Xx�\, Xy, y�\D Ü x < y

y\ Merge@Xx, x�\, Xy�\D Ü otherwise

F

DefinitionB"SplitList", any@xD,
SplitList@xD =

whereBn =  x¤,
[[xi È

i=1,¼,n�2_, [xi È
i=n�2+1,¼,n

__ Ü 2 ý n

[[xi È
i=1,¼,Hn-1L�2_, [xi È

i=Hn+1L�2,¼,n

__ Ü otherwise
FF

DefinitionB"MergeSort", any@xD,
MergeSort@Xx\D = Xx\
MergeSort@xD = where@split = SplitList@xD,
Merge@MergeSort@split1D, MergeSort@split2DDDF

TheoryB"MergeSortTheory",
Definition@"Merge"D

Definition@"SplitList"D
Definition@"MergeSort"DF

For the computations below we use the following knowledge base:

Use@XBuilt|in@"Tuples"D, Built|in@"Numbers"D,
Built|in@"Quantifiers"D, Built|in@"Connectives"D\D

We can now check the examples from above:

Compute@Merge@X1, 3, 5\, X2, 4\D, using ® XTheory@"MergeSortTheory"D\D
X1, 2, 3, 4, 5\

Compute@SplitList@X1, 2, 3, 4, 5\D, using ® XTheory@"MergeSortTheory"D\D
XX1, 2\, X3, 4, 5\\

Compute@MergeSort@X18, 7, 79, 19\D, using ® XTheory@"MergeSortTheory"D\D
X7, 18, 19, 79\

We may compile the theory "MergeSortTheory" to Java by
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We may compile the theory "MergeSortTheory" to Java by

Java|Theory2Java@Theory@"MergeSortTheory"DD
and also load it:

Java|UseTheories@8"MergeSortTheory"<D
Let us sort a list of length 100 in a Theorema computational session:

ComputationalSession@D
Use@XTheory@"MergeSortTheory"D\D
MergeSort@X183, 424, 411, 78, 313, 450, 248, 181, 347, 333, 125, 254, 28,

111, 450, 32, 480, 43, 43, 130, 302, 376, 299, 455, 263, 478, 257, 121,

344, 467, 280, 286, 230, 156, 154, 411, 356, 261, 433, 85, 160, 74, 281,

130, 398, 106, 494, 205, 403, 75, 430, 403, 490, 370, 170, 211, 422, 423,

336, 391, 374, 425, 414, 311, 241, 18, 333, 500, 15, 247, 108, 207, 466,

57, 252, 131, 368, 228, 444, 89, 181, 191, 2, 86, 472, 117, 305, 429, 31,

189, 176, 272, 195, 253, 418, 253, 248, 124, 412, 63\D �� AbsoluteTiming

EndComputationalSession@D
80.4062500, X2, 15, 18, 28, 31, 32, 43, 43, 57, 63, 74, 75, 78, 85, 86, 89,

106, 108, 111, 117, 121, 124, 125, 130, 130, 131, 154, 156, 160, 170,

176, 181, 181, 183, 189, 191, 195, 205, 207, 211, 228, 230, 241, 247,

248, 248, 252, 253, 253, 254, 257, 261, 263, 272, 280, 281, 286, 299,

302, 305, 311, 313, 333, 333, 336, 344, 347, 356, 368, 370, 374, 376,

391, 398, 403, 403, 411, 411, 412, 414, 418, 422, 423, 424, 425, 429,

430, 433, 444, 450, 450, 455, 466, 467, 472, 478, 480, 490, 494, 500\<
The same computation on the Java side is achieved by

Java|Compute@
MergeSort@X183, 424, 411, 78, 313, 450, 248, 181, 347, 333, 125, 254, 28,

111, 450, 32, 480, 43, 43, 130, 302, 376, 299, 455, 263, 478, 257, 121,

344, 467, 280, 286, 230, 156, 154, 411, 356, 261, 433, 85, 160, 74, 281,

130, 398, 106, 494, 205, 403, 75, 430, 403, 490, 370, 170, 211, 422, 423,

336, 391, 374, 425, 414, 311, 241, 18, 333, 500, 15, 247, 108, 207, 466,

57, 252, 131, 368, 228, 444, 89, 181, 191, 2, 86, 472, 117, 305, 429, 31,

189, 176, 272, 195, 253, 418, 253, 248, 124, 412, 63\DD �� AbsoluteTiming

80.0156250, X2, 15, 18, 28, 31, 32, 43, 43, 57, 63, 74, 75, 78, 85, 86, 89,

106, 108, 111, 117, 121, 124, 125, 130, 130, 131, 154, 156, 160, 170,

176, 181, 181, 183, 189, 191, 195, 205, 207, 211, 228, 230, 241, 247,

248, 248, 252, 253, 253, 254, 257, 261, 263, 272, 280, 281, 286, 299,

302, 305, 311, 313, 333, 333, 336, 344, 347, 356, 368, 370, 374, 376,

391, 398, 403, 403, 411, 411, 412, 414, 418, 422, 423, 424, 425, 429,

430, 433, 444, 450, 450, 455, 466, 467, 472, 478, 480, 490, 494, 500\<
In this quite small example the execution is around 25 times faster on the Java side than in a computa-

tional session of Theorema. Table 5.1 shows further time measurements with the function MergeSort.

Task Theorema Compiled Theorema Speed - up Factor

MergeSort@100 elementsD 0.41 s 0.02 s 21

MergeSort@200 elementsD 1.48 s 0.02 s 74

MergeSort@300 elementsD 3.3 s 0.03 s 110

MergeSort@500 elementsD 10.7 s 0.06 s 178

MergeSort@1000 elementsD 62.53 s 0.19 s 329
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Task Theorema Compiled Theorema Speed - up Factor

MergeSort@100 elementsD 0.41 s 0.02 s 21

MergeSort@200 elementsD 1.48 s 0.02 s 74

MergeSort@300 elementsD 3.3 s 0.03 s 110

MergeSort@500 elementsD 10.7 s 0.06 s 178

MergeSort@1000 elementsD 62.53 s 0.19 s 329

Table 5.1: Time Measurements of MergeSort
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6 Translation of Higher Order Functions

The  Theorema-Java Compiler  is  able  to  translate functions which take one  or  more functions as  input.

Although Java does not directly support first-class functions, it is possible to overcome this limitation by

encapsulating methods in objects and then pass these objects. For this mechanism to work, it is necessary

that the encapsulating class is derived from a certain base class or that it implements a certain interface.

In the current version of the Theorema-Java Compiler the former variant is implemented, namely all data

that  is  passed  to  a  compiled  method  is  of  type  Data,  which  implements  the  method  call,  whose

signature is Data call(Data[]).

6.1 An Example: DoubleMap

Before explaining the details of the translation of higher order functions in the above stated way, we want

to give a simple example to explain the basic ideas of this translation step.

The function DoubleMap takes as arguments a function and a list, applies the function twice to each

element of this list, and returns the resulting list. For testing DoubleMap, we additionally implement the

functions PlusOne and  MapAddTwo, and, finally, we pack everything together into the theory "Double-

MapTheory".

Definition@"PlusOne", any@xD,
PlusOne@xD = x + 1D
DefinitionB"DoubleMap", any@x, x�, fD,

DoubleMap@f, X\D = X\
DoubleMap@f, Xx, x�\D = f@f@xDD \DoubleMap@f, Xx�\DF

Definition@"MapAddTwo", any@xD,
MapAddTwo@xD = DoubleMap@PlusOne, xDD

TheoryB"MapAddTwoTheory",
Definition@"PlusOne"D
Definition@"DoubleMap"D
Definition@"MapAddTwo"DF

DoubleMap is a higher order function, which treats its first argument as a function and applies it to the

elements of the list that comes as second argument. It is very similar to the map  function which is very

common in functional programming languages and also implemented in Mathematica as Map.

The following computation adds two times 1  to every element of the list X1, 2, 3, 4, 5\  by

applying the function MapAddTwo to this list:
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Compute@MapAddTwo@X1, 2, 3, 4, 5\D, using ®XBuilt|in@"Tuples"D, Built|in@"Numbers"D, Theory@"MapAddTwoTheory"D\D
X3, 4, 5, 6, 7\

In order to do the same computation on the Java side, we first compile the theory

Java|Theory2Java@Theory@"MapAddTwoTheory"DD
and then load it

Java|UseTheories@8"MapAddTwoTheory"<D
We can now use the compiled code for computations:

Java|Compute@MapAddTwo@X1, 2, 3, 4, 5\DD
X3, 4, 5, 6, 7\

The Java code of the function DoubleMap looks like this:

public static Data doubleMapHData _param1,Data _param2L8
if HHBI_Tuple.IsTupleH_param2L&&HHHTupleL_param2L.sizeHL�0LLL8

return new TupleHnew Data@D8<L;<��if
if HHBI_Tuple.IsTupleH_param2L&&HHHTupleL_param2L.sizeHL³1LLL8

return BI_Tuple.prependH_param1.callHnew Data@D8_param1.callH
new Data@D8_param2.argH1L<L<L,HTupleLdoubleMapH_param1,BI_Tuple.

createTupleHnew Data@D8BI_Tuple.restAsSequenceHHTupleL_param2,1L<LLL;<��if
return null;<��doubleMap

So, the first parameter _param1 is used as a function by calling its call method. To make this invoca-

tion work, we have to pass an appropriate object as first parameter. Let us have a look at how this is done

in the method mapAddTwo:

public static Data mapAddTwoHData _param1L8
return doubleMapHnew PlusOneFunctionHL,_param1L;<��mapAddTwo

mapAddTwo calls the method doubleMap and passes to it an instance of the class

PlusOneFunction  as  first  parameter.  This  class  is  automatically  created  by  the  compiler  and  is

implemented like this:
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mapAddTwo calls the method doubleMap and passes to it an instance of the class

PlusOneFunction  as  first  parameter.  This  class  is  automatically  created  by  the  compiler  and  is

implemented like this:

public class PlusOneFunction extends Function8
ExtendedData _param1=null;

public PlusOneFunctionHL8<��PlusOneFunction
public PlusOneFunctionHExtendedData _param1L8

this._param1=_param1;<��PlusOneFunction
public Data callHData@D argsL8

if Hargs.length�1L8
return Algorithms.plusOneHargs@0DL;<��if

return Algorithms.plusOneH_param1L;<��call<��class PlusOneFunction

It  basically  contains  the  function  call,  which  takes  an  array  of  Data  and  calls  the  method

Algorithms.plusOne accordingly.

6.2 General Translation

The general translation of higher order functions and predicates is based on two ingredients: the creation

of an encapsulating function class (like PlusOneFunction in the previous example), which is created

by the Theorema-Java Compiler automatically for  every function and every predicate  of a  theory,  and

the invocation of its call method.

Let us have a look at a simple example that is as general as possible and as complicated as necessary.

The  function  f  is  defined  as  f[g,x]=g[x],  the  function  z  is  defined  as  z[x]=e  (where  e  is  an

expression  defined  in  terms  of  x),  and  the  function  a  is  defined  as  a[x]=f[z,x].  The  function   f

coded in the intermediate language looks like this:

X·DeFun@·sig@"f"D, X_param1, _param2\,
·Conditional@XX@ ß D, ·Expr@_param1, X_param2\D\\DD\

The  parameter  _param1  in  ·Expr@_param1, X_param2\D  is  used  as  a  function,  and,  hence,  the

corresponding Java code of f is:
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public static Data fHData _param1,Data _param2L8
return _param1.callHnew Data@D8_param2<L;<��f

So,  the  function  f  takes  two  parameters,  invokes  the  call  method  of  the  first,  and  passes  to  it  the

second as an array with one entry. For making this mechanism work, the invoking method has to pass to

f  an instance of a subclass of the class Function,  which is abstract and directly derived from Data.

To see how this works, let us have a look at the function a in intermediate language:

·DeFun@·sig@"a"D, X_param1\,
·Conditional@XX@ ß D, ·Expr@·const@fD, X·const@zD, _param1\D\\DD

The corresponding Java code is:

public static Data aHData _param1L8
return fHnew zFunctionHL,_param1L;<��a

The function a calls f and passes a new instance of zFunction, which is automatically created by the

Theorema-Java Compiler. Here is its Java code:

public class zFunction extends Function8
ExtendedData _param1=null;

public zFunctionHL8<��zFunction
public zFunctionHExtendedData _param1L8

this._param1=_param1;<��zFunction
public Data callHData@D argsL8

if Hargs.length�1L8
return Algorithms.zHargs@0DL;<��if

return Algorithms.zH_param1L;<��call<��class zFunction

Hence, when f  is called (by the method a),  it  invokes the call  method of its first argument, which is

the newly created instance of the class zFunction,  and this method checks the number of arguments

and eventually calls the method Algorithms.z.
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Hence, when f  is called (by the method a),  it  invokes the call  method of its first argument, which is

the newly created instance of the class zFunction,  and this method checks the number of arguments

and eventually calls the method Algorithms.z.

6.3 Time Measurements

In this section we want to extend the mergesort example from Section 5.3 even further by implementing

the algorithm as a higher order function. For this, the function MergeSort gets as second parameter a

predicate defining the sorting ordering. This predicate is then passed through to Merge, which uses it to

actually  merge  the  two  lists  accordingly.  Additionally,  we  define  the  predicates  LessFunc  and

GreaterFunc,  which implement the  predicates  <  (less  than)  and  >  (greater  than),  respectively.  The

functions  MergeSortIncreasing  and  MergeSortDecreasing  finally  put  together  the  higher

order function MergeSort and these ordering predicates.

DefinitionB"OrderFunctions", any@x, yD,
LessFunc@x, yD � Hx < yL
GreaterFunc@x, yD � Hx > yLF

DefinitionB"Merge", any@x, x�, y, y�, FD,
Merge@Xx�\, X\, FD = Xx�\
Merge@X\, Xy�\, FD = Xy�\
Merge@Xx, x�\, Xy, y�\, FD = ; x\ Merge@Xx�\, Xy, y�\, FD Ü F@x, yD

y\ Merge@Xx, x�\, Xy�\, FD Ü otherwise

F

DefinitionB"MergeSort", any@x, FD,
MergeSort@Xx\, FD = Xx\
MergeSort@x, FD = where@split = SplitList@xD,
Merge@MergeSort@split1, FD, MergeSort@split2, FD, FDD

MergeSortAscending@xD = MergeSort@x, LessFuncD
MergeSortDeccending@xD = MergeSort@x, GreaterFuncD

F

TheoryB"HigherOrderMergeSortTheory",
Definition@"OrderFunctions"D

Definition@"Merge"D
Definition@"SplitList"D
Definition@"MergeSort"D

F

For the computations below we use the following knowledge base:

Use@XBuilt|in@"Tuples"D, Built|in@"Numbers"D,
Built|in@"Quantifiers"D, Built|in@"Connectives"D\D

If  we  want,  for  instance,  to  sort  the  list  X99, 12, 5, 34, 9, 1, 18, 7\  in  ascending  order,  we

compute
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Compute@
MergeSortAscending@X183, 424, 411, 78, 313, 450, 248, 181, 347, 333, 125,

254, 28, 111, 450, 32, 480, 43, 43, 130, 302, 376, 299, 455, 263, 478,

257, 121, 344, 467, 280, 286, 230, 156, 154, 411, 356, 261, 433, 85, 160,

74, 281, 130, 398, 106, 494, 205, 403, 75, 430, 403, 490, 370, 170, 211,

422, 423, 336, 391, 374, 425, 414, 311, 241, 18, 333, 500, 15, 247, 108,

207, 466, 57, 252, 131, 368, 228, 444, 89, 181, 191, 2, 86, 472, 117,

305, 429, 31, 189, 176, 272, 195, 253, 418, 253, 248, 124, 412, 63\D,
using ® XTheory@"HigherOrderMergeSortTheory"D\D �� AbsoluteTiming

80.5312500, X2, 15, 18, 28, 31, 32, 43, 43, 57, 63, 74, 75, 78, 85, 86, 89,

106, 108, 111, 117, 121, 124, 125, 130, 130, 131, 154, 156, 160, 170,

176, 181, 181, 183, 189, 191, 195, 205, 207, 211, 228, 230, 241, 247,

248, 248, 252, 253, 253, 254, 257, 261, 263, 272, 280, 281, 286, 299,

302, 305, 311, 313, 333, 333, 336, 344, 347, 356, 368, 370, 374, 376,

391, 398, 403, 403, 411, 411, 412, 414, 418, 422, 423, 424, 425, 429,

430, 433, 444, 450, 450, 455, 466, 467, 472, 478, 480, 490, 494, 500\<
To sort the same list in descending order, we call

Compute@MergeSortDeccending@X183, 424, 411, 78, 313, 450, 248, 181, 347, 333, 125, 254, 28, 111, 450,

32, 480, 43, 43, 130, 302, 376, 299, 455, 263, 478, 257, 121, 344,

467, 280, 286, 230, 156, 154, 411, 356, 261, 433, 85, 160, 74, 281,

130, 398, 106, 494, 205, 403, 75, 430, 403, 490, 370, 170, 211, 422,

423, 336, 391, 374, 425, 414, 311, 241, 18, 333, 500, 15, 247, 108,

207, 466, 57, 252, 131, 368, 228, 444, 89, 181, 191, 2, 86, 472, 117,

305, 429, 31, 189, 176, 272, 195, 253, 418, 253, 248, 124, 412, 63\D,
using ® XTheory@"HigherOrderMergeSortTheory"D\D �� AbsoluteTiming

80.5312500, X500, 494, 490, 480, 478, 472, 467, 466, 455, 450, 450, 444, 433,

430, 429, 425, 424, 423, 422, 418, 414, 412, 411, 411, 403, 403, 398,

391, 376, 374, 370, 368, 356, 347, 344, 336, 333, 333, 313, 311, 305,

302, 299, 286, 281, 280, 272, 263, 261, 257, 254, 253, 253, 252, 248,

248, 247, 241, 230, 228, 211, 207, 205, 195, 191, 189, 183, 181, 181,

176, 170, 160, 156, 154, 131, 130, 130, 125, 124, 121, 117, 111, 108,

106, 89, 86, 85, 78, 75, 74, 63, 57, 43, 43, 32, 31, 28, 18, 15, 2\<
Let us now compile and load the theory "HigherOrderMergeSortTheory" and make the same calculations

on the Java side:

Java|Theory2Java@Theory@"HigherOrderMergeSortTheory"DD
Java|UseTheories@8"HigherOrderMergeSortTheory"<D
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Java|Compute@
MergeSortAscending@X183, 424, 411, 78, 313, 450, 248, 181, 347, 333,

125, 254, 28, 111, 450, 32, 480, 43, 43, 130, 302, 376, 299, 455,

263, 478, 257, 121, 344, 467, 280, 286, 230, 156, 154, 411, 356,

261, 433, 85, 160, 74, 281, 130, 398, 106, 494, 205, 403, 75, 430,

403, 490, 370, 170, 211, 422, 423, 336, 391, 374, 425, 414, 311,

241, 18, 333, 500, 15, 247, 108, 207, 466, 57, 252, 131, 368,

228, 444, 89, 181, 191, 2, 86, 472, 117, 305, 429, 31, 189, 176,

272, 195, 253, 418, 253, 248, 124, 412, 63\DD �� AbsoluteTiming

80.0156250, X2, 15, 18, 28, 31, 32, 43, 43, 57, 63, 74, 75, 78, 85, 86, 89,

106, 108, 111, 117, 121, 124, 125, 130, 130, 131, 154, 156, 160, 170,

176, 181, 181, 183, 189, 191, 195, 205, 207, 211, 228, 230, 241, 247,

248, 248, 252, 253, 253, 254, 257, 261, 263, 272, 280, 281, 286, 299,

302, 305, 311, 313, 333, 333, 336, 344, 347, 356, 368, 370, 374, 376,

391, 398, 403, 403, 411, 411, 412, 414, 418, 422, 423, 424, 425, 429,

430, 433, 444, 450, 450, 455, 466, 467, 472, 478, 480, 490, 494, 500\<
In this quite small example the execution is around 30 times faster on the Java side than in a computa-

tional  session  of  Theorema.  Table  6.1  shows  further  time  measurements  with  the  function

MergeSortAscending.

Task Theorema Compiled Theorema Speed - up Factor

MergeSortAscending@100 elementsD 0.53 s 0.02 s 27

MergeSortAscending@200 elementsD 1.53 s 0.03 s 51

MergeSortAscending@300 elementsD 3.4 s 0.03 s 113

MergeSortAscending@500 elementsD 10.7 s 0.06 s 178

MergeSortAscending@1000 elementsD 62.4 s 0.19 s 328

Table 6.1: Time Measurements of MergeSortAscending
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7 Translation of Functors

In this thesis, a domain is a carrier together with operations (functions and predicates) on this carrier, and

a  functor  is  a  function  that  generates  a  new  domain  from  given  ones.  Functors  provide  an  elegant

approach  to  generic  programming and  were introduced  in  the  Theorema system by the  work of  Bruno

Buchberger ([Tma00]). For example, using functors, the code for the operations in the domain of polyno-

mials  over  a  coefficient  domain  needs  to  be  written only  once,  independent  of  the  specific  coefficient

domain.  By  iteration,  the  application  of  (algorithmic)  functors  to  domains  generated  by  (algorithmic)

functors (starting from some initial, algorithmic domains) may generate a wide spectrum of (algorithmic)

domains  with  only  very  little  code  for  the  few  functors  involved.  An  introduction  to  functors,  their

power, and their usage in Theorema (including a lot of examples) is given in [Buch03] and [Buch08].

The  Theorema-Java  Compiler  is  able  to  translate  domains  which are  defined  by  the  application  of

functors,  and,  for  that,  provides  the  command Java–DeclareDomain.  Additionally,  the  framework

of  the  compiler  offers  three  basic  domains (see  Section  10.3.2):  the  class  Integers  representing the

domain  of  integers,  the  class  Rationals  representing  the  domain  of  rational  numbers,  and  the  class

IntegersMod5  representing the domain of integers modulo five.

In  this  chapter  of  the  thesis,  we present  first  an  introductory example and  then explain the  general

translation  of  Theorema  definitions  based  on  functors  and  domains.  In  Chapter  11,  we  will  present  a

whole case study on Gröbner Bases, where we make extensive use of functors and domains.

7.1 An Example: CartesianProduct

The  functor  CartesianProduct  takes  a  domain  D  and  generates  the  domain  D�D,  the  cartesian

product of D and D. Further details on this functor and a detailed description of the syntax and semantic

can be found in [Buch03].

DefinitionB"Cartesian Product", any@DD,
CartesianProduct@DD = FunctorBN, any@X, x1, x2, y1, y2D,

s = X\
Î
N

@XD � Jis|tuple@XD í H X¤ = 2L í Î
D

@X1D í Î
D

@X2DN
0
N

= [0
D
, 0

D
_

Xx1, x2\ >
N

Xy1, y2\ � KKx1 >
D
y1O í Kx2 >

D
y2OO

Xx1, x2\ +
N

Xy1, y2\ = Zx1 +
D
y1, x2 +

D
y2^

FF
Definition@"CP Domains",

CP|Int = CartesianProduct@NDD
Given a domain D with the decision predicate Î

D
 (i.e., Î

D
@XD yields true, if and only if X is an element

of  the  carrier  of  D),  the  binary  predicate  >
D

,  and  the  binary  function  +
D

,  CartesianProduct[D]

returns a domain, let us call it N, with two predicates, one function, and a constant:
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Given a domain D with the decision predicate Î
D

 (i.e., Î
D

@XD yields true, if and only if X is an element

of  the  carrier  of  D),  the  binary  predicate  >
D

,  and  the  binary  function  +
D

,  CartesianProduct[D]

returns a domain, let us call it N, with two predicates, one function, and a constant:

è The unary decision predicate of N is defined as

Î
N

@XD � Jis|tuple@XD í H X¤ = 2L í Î
D

@X1D í Î
D

@X2DN
That is, an arbitrary X  is element of the carrier of the new domain N,  if and only if X  is a tuple, it is of

length two, and its two components belong to the carrier of D.

è The binary predicate >
N

 is defined component-wise in terms of >
D

:

Xx1, x2\ >
N

Xy1, y2\ � KKx1 >
D
y1O í Kx2 >

D
y2OO

è The constant 0 of N is defined as

0
N

= [0
D
, 0

D
_

è The binary operation +
N

 is defined component-wise in terms of +
D

:

Xx1, x2\ +
N

Xy1, y2\ = Zx1 +
D
y1, x2 +

D
y2^

Additionally,  the  domain  CP–Int  is  defined  as  CartesianProduct[N],  i.e.,  CP–Int  is  the

cartesian product N�N.

 We want now to do some computations in this domain in both Theorema and Java. For this, we use

the following knowledge base:

Use@XBuilt|in@"Tuples"D, Built|in@"Connectives"D,
Built|in@"Numbers"D, Built|in@"Number Domains"D, Built|in@"Sets"D,
Definition@"Cartesian Product"D, Definition@"CP Domains"D\D

The following computation determines whether the tuple X18,7\ is an element of the carrier of

CP–Int:

ComputeB Î
CP|Int

@X18, 7\DF
True

It  returns  True,  because  both  18  and  7  are  natural  numbers.  To  add  X1, 2\  and  X3, 4\  in  the

domain CP–Int, we may execute:
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ComputeBX1, 2\ +
CP|Int

X3, 4\F
X4, 6\

Finally, we want to check if X18, 7\ > X7, 9\ holds in CP–Int:

ComputeBX18, 7\ >
CP|Int

X2, 9\F
False

This gives, of course, False, because 18>2 but 7<9.

Now,  we  want  to  compile  the  domain  CP–Int  to  Java.  For  this  purpose,  the  command  Java–

DeclareDomain is provided, and a call to it has the following syntax:

Java|DeclareDomain@DomainName = FunctorName@ParametersD, DefinitionD
DomainName is the name of the domain on the Java side, FunctorName is the name of the functor which

is applied  to Parameters  and returns the new domain. The current version of the Theorema-Java Com-

piler  supports Parameters  to  be a  (possibly empty) sequence of domains and integers. Definition  is the

Theorema definition that defines the functor FunctorName.

So, in order to create the domain CP–Int on the Java side, we have to execute:

Java|DeclareDomain@CP|Int = CartesianProduct@IntegersD,
Definition@"Cartesian Product"DD

As a result, the Java class CP_Int (see renaming of identifiers in Section 3.2) is created and compiled:
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public class CP_Int implements Domain8
public static boolean elementHData _param1L8

return HHBI_Tuple.IsTupleH_param1L&&HBI_Integer.valueOfHHHContainerL_param1L.sizeHLL.
equalHBI_Integer.valueOfH2LLL&&

Integers.elementHHHTupleL_param1L.
argHHHBI_NumberLBI_Integer.valueOfH1LL.asIntHLLL&&

Integers.elementHHHTupleL_param1L.
argHHHBI_NumberLBI_Integer.valueOfH2LL.asIntHLLLLL;<��element

public static boolean greaterHData _param1,Data _param2L8
if HHBI_Tuple.IsTupleH_param1L&&HHHTupleL_param1L.sizeHL�2L&&

BI_Tuple.IsTupleH_param2L&&HHHTupleL_param2L.sizeHL�2LLL8
return HHIntegers.greaterH_param1.argH1L,_param2.argH1LL&&

Integers.greaterH_param1.argH2L,_param2.argH2LLLL;<��if
return false;<��greater

public static Data plusHData _param1,Data _param2L8
if HHBI_Tuple.IsTupleH_param1L&&HHHTupleL_param1L.sizeHL�2L&&

BI_Tuple.IsTupleH_param2L&&HHHTupleL_param2L.sizeHL�2LLL8
return new TupleHnew Data@D8Integers.plusH_param1.argH1L,_param2.argH1LL,

Integers.plusH_param1.argH2L,_param2.argH2LL<L;<��if
return null;<��plus

public static Data constantsHString _param1L8
if H_param1.equalsH"0"LL8

return new TupleHnew Data@D8Integers.constantsH"0"L,
Integers.constantsH"0"L<L;<��if

return null;<��constants
...<��class CP_Int

This Java class has the following features:
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è It  implements the  interface Domain,  which is  empty and which has to  be  implemented by all

classes representing a domain.

è The  functions  of  the  Theorema  domain  are  implemented  as  static  methods  since  they  are

associated to the domain itself rather than to an instance of it. Actually, domain classes are never

instantiated.

è The  return  value of  methods which implement predicates  is  boolean,  methods which imple-

ment functions return Data objects.

è The method constants gets a string and returns the corresponding constant.

7.2 General Translation

The general translation of a functor basically involves the translation techniques described in the previ-

ous chapters. However, additional particularities have to be considered:

è A  functor,  let  us  call  it  N  for  the  moment,  may contain  three  types  of  definitions,  which are

described in the following list:

è A function definition has either the form f
N

@x1, ¼ , xnD = T  or the form 

f
N

@x1, ¼ , xnD := T .

è A predicate definition has either the form p
N

@x1, ¼ , xnD � F or the form 

p
N

@x1, ¼ , xnD : � T .

è A constant definition has either the form C
N

= T  or the form C
N

:= T .

è Every functor has to define a membership predicate Î .

è In  the  current  version  of  the  Theorema-Java  Compiler  parameters  of  functors  may  be  a

(possibly empty) sequence of domains and integers.

è The  command  Java–DeclareDomain[DomainName  =

FunctorName[Parameters], Definition] creates the domain DomainName on the

Java side, i.e., it creates one Java class which contains one static method for every function and

every predicate of the newly defined domain.

According  to  the  original  inventor  and  implementor of  functors  in  Theorema,  Bruno  Buchberger,   the

fundamental  idea  of  Theorema's  functor  concept  is  that  Theorema  (as  well  as  Mathematica)  supports

general  currying  (see  [Buch08]).  Since  currying  is  not  possible  in  Java,  we  had  to  come  up  with  a

different concept in order to translate Theorema functors into Java code. We achieve this compilation by

applying the following mechanism ([Buch07b]): Let us first define an exemplary functor F  as
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DefinitionB"F", any@DD,
F@DD = FunctorBN, any@XD,

s = X\
Î
N

@XD � true

g
N
@XD = h

D
@XD

FF
This functor takes a domain D and defines a function g in terms of D's function h. Suppose we previously

defined the domain M, we can create the domain  F[M] on the Java side by executing

Java|DeclareDomain@FM = F@MD, Definition@"F"DD
For  creating  the  corresponding  Java  code,  the  Theorema-Java  Compiler  translates  every  function  call

f
D

@¼D  into the Java function call M.f(…).  So, the Java code of the method g  in the domain FM looks

like this: 

public static Data gHData _param1L8
return M.hH_param1L;<��g

Of course, this translation can equally be applied to all kinds of functions and predicates.

7.3 Time Measurements

An detailed  case  study  of  functors  including  time  measurements in  Theorema  and  on  the  Java  side  is

presented in Chapter 11 of this thesis.
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8 Calling Compiled Algorithms

The previous chapters  explained explicitly the translation of Theorema definitions into executable Java

code. After achieving this compilation, we have to come up with a way of calling the algorithms on the

Java  side  from within Theorema.  That  is,  we  need  an  interface  between Mathematica and  Java  which

allows  both  instantiations  of  classes  and  calls  to  their  methods.  J/Link  is  the  tool  of  our  choice  (see

Section  2.1).  The  framework of  the  Theorema-Java  Compiler  provides  the  following three  commands,

which internally use a J/Link connection to an instance of the class JavaComputer (see Section 10.4),

to call algorithms and to control the used theories and domains during the computation:

è Java–Compute:  This  is  the  main  command  to  call  Java  algorithms,  which  were  compiled

from Theorema definitions beforehand. Java–Compute takes as its only argument a call to an

algorithm, executes this algorithm with the given parameters, and returns its result. The call  in

the argument must have the same syntax as it would have in Theorema's Compute command.

è Java–UseTheories:  This  command  is  similar  to  Theorema's  Use  command.  Java–

UseTheories takes a list of theory names (i.e.,  a list of strings) and loads the corresponding

Java classes, which, thereby, become available for the next calls to Java–Compute.

è Java–UseDomains:  This  command takes a  list  of  domain names (i.e.,  a  list of expressions)

and loads the corresponding Java classes, which, thereby, become available for the next calls to

Java–Compute.
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9 Compiler Settings

The  Theorema-Java  Compiler  provides  currently  two  commands  to  change  its  behavior:  Java-

SetDefaultDomain  and  Java-SetCompilerParameter.  This  chapter  describes  these  com-

mands in detail.

9.1 Java-SetDefaultDomain

The  Theorema-Java Compiler  allows to  use operations  without stating explicitly in  which domain they

are  to  be  performed.  You  may,  for  instance,  evaluate  18 + 7  and  assume that  the  operation  +  is  per-

formed  in  the  domain  of  natural  numbers.  The  command  Java-SetDefaultDomain  is  used  to

calibrate this mechanism of automatically assigning a certain domain to an operator,  and a call to it has

the following syntax:

Java|SetDefaultDomain@Operation, DomainD
Operation gives the operation name or symbol, and Domain is the name of a previously compiled (or

built-in) domain which hereby becomes the default domain of Operation. For instance, if you want to

set the default domain of the predicate £ to Q, you call 

Java|SetDefaultDomain@ £ , RationalsD
8+ ® Rationals, - ® Rationals, * ® Rationals, � ® Rationals, ^ ® Rationals,

Quotient ® Integers, Mod ® Integers, < ®

Rationals, £ ® Rationals, > ® Rationals, ³ ® Rationals,

Max ® Rationals, Min ® Rationals, £ ® Rationals<

As a result,  the Theorema-Java Compiler will translate every occurrence of the symbol £  into the Java

code  Rationals.lessEqual(...)  (where  Rationals  is  a  Java  class  provided  by  the  frame-

work of the compiler).

To obtain a list of all operations and their assigned default domain, the command

Java|GetDefaultDomains@D
is provided. After the Theorema-Java Compiler is loaded, Java–GetDefaultDomains[] yields

8+ ® Rationals, - ® Rationals, * ® Rationals, � ® Rationals, ^ ® Rationals,

Quotient ® Integers, Mod ® Integers, < ® Rationals, £ ® Rationals, > ®

Rationals, ³ ® Rationals, Max ® Rationals, Min ® Rationals<
This means that Rationals (i.e., Q) is the default domain for the operations +, -, *, �, ^ and for the

predicates <,  £,  >,  ³,  Max,  Min.  Integers  is the default domain for the operations Quotient  and

Mod.
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9.2 Java-SetCompilerParameter

The compiler offers the command Java-SetCompilerParameter  to  alter  its  behavior,  and a call

to it has the following syntax:

Java|SetCompilerParameter@ParameterName, ValueD
ParameterName may have one of the following values:

è PARAM–AUTODETECT–TAILREC.  If  Value  is  set  to  true,  the  compiler  translates  tail

recursive function into iterative Java programs. The default value of this parameter is false.

è PARAM–COMPILE–SOURCE.  If  Value  is  set  to  false,  the  compiler  generates  Java  source

files, but does not compile them to Java byte code. The default value of this parameter is true.

è PARAM–COMPILE–DEBUGINFO.  If Value  is set to true,  the compiler uses the option "-g"

when calling the Java compiler. The default value of this parameter is false.

è PARAM–JAVACOMPUTER–DIRECTORY.  Value   sets  the  directory  where  the  JavaCom-

puter class (see Section 10.4) is stored.

To obtain the value of a parameter, the command Java-GetCompilerParameter is provided:

Java|GetCompilerParameter@ParameterNameD
ParameterName may have the same values as given above.
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10 The Framework of the Theorema-Java Compiler

10.1 The Package Structure

In  the  course  of  the  development  of  the  Theorema-Java  Compiler  a  whole  framework was  created  in

order to support all the upcoming requirements of the compilation. This framework basically consists of

two  parts:  the  Theorema-Java  Compiler  itself,  which  is  a  Mathematica  program,  and  a  whole  Java

package,  which  basically  provides  Java  classes  for  built-in  structures  (e.g.,  tuples  and  sequences)  and

built-in domains (e.g., rational numbers). This package and its subpackages have the following hierarchi-

cal structure:

JavaComputer

System

BasicDomains

BuiltIn

JavaComputer

User

Domains

Theories

This chapter of the thesis is about this second part of the framework, these Java classes.

The  framework  of  the  Theorema-Java  Compiler  provides  the  precompiled  Java  package  JavaCom-

piler which includes the JavaComputer class and two major subpackages BuiltIn and

BasicDomains. All these parts are described in detail in the following sections of this chapter.

Also, the Java classes which are created during the compilation of user-defined Theorema programs

are  organized  in  subpackages  of  the  overall  package  JavaCompiler:  classes  which correspond  to  a

Theorema theory TheoryName  (i.e.,  created by a call to Java–Theory2Java) belong to the package

JavaCompiler.User.Theories.TheoryName;  classes  which  represent  a  Theorema  domain

are stored in the package JavaCompiler.User.Domains. 

10.2 The Package BuiltIn

The  classes  of  the  package  BuiltIn  are  of  general  purpose  and  form  the  fundamental,  Java-sided

framework of the Theorema-Java Compiler. Among these classes are,  for instance, the superclass of all

method parameters (Data), boolean value expressing classes (BooleanData, True, False), and the

Tuple class.

10.2.1 The Class Data

This abstract class is the base class of most of the classes of the framework and, in particular, of all user-

defined abstract  data types (see Chapter 4).  Hence, it  is also used as the type of all  method parameters

and of return values. The source code of Data is given below:
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public abstract class Data8
public Data callHData@D argsL8

return null;<��call
public abstract Data argHint nL;
public abstract boolean equalHData xL;
public abstract String toStringHL;
public abstract Expr toExprHL;<��class Data

10.2.2 The Classes BooleanData, True, and False

The class BooleanData, an abstract subclass of Data, is the return value of all methods expressing a

predicate and represents a boolean value. Its two subclasses True and False stand for the truth values

True and False, respectively. The source codes of BooleanData and True are cited below:

public abstract class BooleanData extends Data8
public boolean isTrueHL8

return false;<��isTrue
public boolean isFalseHL8

return false;<��isFalse<��BooleanData
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public class True extends BooleanData8
public boolean isTrueHL8

return true;<��isTrue
public Data argHint nL8

return null;<��arg
public boolean equalHData xL8

if Hx instanceof BooleanDataL
return HHBooleanDataLxL.isTrueHL;

else

return false;<��equal
public String toStringHL8

return "True";<��toString
public Expr toExprHL8

return new ExprHExpr.SYMBOL,"True"L;<��toExpr<��class True

10.2.3 The Classes BI_Number, BI_Integer, and BI_Rational

The  class  BI_Number  ("BI"  stands for  "built-in"),  which is  an  abstract  subclass of  Data,  represents  an

element  of  a  number  domain with basic  operations  (e.g.,  addition,  multiplication) and  basic  predicates

(e.g., greater than, less than). Here is its Java source code:
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public abstract class BI_Number extends Data8
public abstract BI_Number addHBI_Number aL;
public abstract BI_Number minusHBI_Number aL;
public abstract BI_Number multiplyHBI_Number aL;
public abstract BI_Number divideHBI_Number aL;
public abstract BI_Number getZeroHL;
public abstract boolean isGreaterHBI_Number aL;
public abstract boolean isGreaterEqualHBI_Number aL;
public abstract boolean isLessHBI_Number aL;
public abstract boolean isLessEqualHBI_Number aL;
public abstract boolean isUnequalHBI_Number aL;
public abstract int asIntHL;<��BI_Number

The classes BI_Integer and BI_Rational are concrete subclasses of BI_Number and implement

BI_Number's  methods  accordingly.  For  this,  BI_Integer  internally  uses  an  instance  of  the  class

java.math.BigInteger, and BI_Rational uses a pair of such instances.

10.2.4 The Classes Container, Tuple, and Set

The  class  Container,  an  abstract  subclass  of  Data,  acts  as  a  joint  superclass  of  Tuple  and

Sequence.

public abstract class Container extends Data8
public abstract int sizeHL;<��class Container

An instance of the class Tuple corresponds to a Theorema expression whose head is Tuple, that is, it

is a container for arbitrary many objects of type Data. Similarly, an instance of Set stands for a set in

Theorema. Below we present the source code of Tuple.

public class Tuple extends Container8
Data@D jls;

public TupleHData@D jlsL8
this.jls=jls;<��Tuple

public TupleHData@D jls,int nL8
this.jls=new Data@nD;
forHint i=0;i<n;i++L

this.jls@iD=jls@iD;<��Tuple
public Data argHint nL

10 The Framework of the Theorema-Java Compiler 64



8
if Hn-1<jls.lengthL

return jls@n-1D;
return null;<��arg

public Data argHBI_Integer biL8
return argHbi.asIntHLL;<��arg

public boolean equalHData xL8
if H!Hx instanceof TupleLL

return false;

Tuple xt=HTupleLx;
if Hxt.sizeHL¹jls.lengthL

return false;

forHint i=0;i<jls.length;i++L
if H!jls@iD.equalHxt.argHi+1LLL

return false;

return true;<��equal
public Expr toExprHL8

Expr@D es=new Expr@jls.lengthD;
forHint i=0;i<jls.length;i++L

es@iD = jls@iD.toExprHL;
return new ExprHnew ExprHExpr.SYMBOL,

String.valueOfHConstants.TRADEMARKL+"Tuple"L,esL;<��toExpr
public int sizeHL8

return jls.length;<��size
public void replaceHint n,Data jlL8

jls@n-1D=jl;<��replace
public Sequence asSequenceHL8

return new SequenceHjlsL;<��asSequence
public String toString
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public String toStringHL8
return toExprHL.toStringHL;<��toString<��class Tuple

10.2.5 The Classes BI_Tuple and BI_Set

The class BI_Tuple  contains several  (static)  methods for  basic  operations  on tuples, e.g.,  appending,

replacing, and deleting of elements. The source code of this class is given below.

public class BI_Tuple8
static public Data replaceElementHTuple a1,BI_Number a2,Data a3L8

int size = HHTupleLa1L.sizeHL;
int n = a2.asIntHL;
Data@D mos = new Data@sizeD;
forHint i=0;i<size;i++L

if Hi�n-1L
mos@iD=a3;

else

mos@iD=HHTupleLa1L.argHi+1L;
return new TupleHmosL;<��replaceElement

static public boolean IsTupleHData a1L8
return Ha1 instanceof TupleL;<��IsTuple

static public Tuple appendHTuple t,Data aL8
Data@D result=new Data@t.sizeHL+1D;
forHint i=0;i<t.sizeHL;i++L

result@iD=t.argHi+1L;
result@t.sizeHLD=a;

return new TupleHresultL;<��append
static public Tuple prependHData a,Tuple tL8

Data@D result = new Data@t.sizeHL+1D;
result@0D = a;

forHint i=0;i<t.sizeHL;i++L
result@i+1D = t.argHi+1L;

;
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return new TupleHresultL;<��prepend
static public Tuple appendHTuple t,Tuple taL8

int t_size = t.sizeHL;
int ta_size = ta.sizeHL;
Data@D result = new Data@t_size+ta_sizeD;
forHint i=0;i<t_size;i++L

result@iD=t.argHi+1L;
forHint i=0;i<ta_size;i++L

result@t_size+iD=ta.argHi+1L;
return new TupleHresultL;<��append

static public Tuple deleteElementHTuple t,BI_Number posL8
Data@D result = new Data@t.sizeHL-1D;
int pv = pos.asIntHL;
forHint i=0;i<pv-1;i++L

result@iD=t.argHi+1L;
forHint i=pv;i<t.sizeHL;i++L

result@i-1D=t.argHi+1L;
return new TupleHresultL;<��deleteElement

static public Tuple deleteFirstHTuple tL8
Data@D result = new Data@t.sizeHL-1D;
forHint i=1;i<t.sizeHL;i++L

result@i-1D=t.argHi+1L;
return new TupleHresultL;<��deleteFirst

static public Tuple insertElementHTuple t,BI_Number pos,Data aL8
Data@D result = new Data@t.sizeHL+1D;
int pv = pos.asIntHL;
forHint i=0;i<pv-1;i++L

result@iD = t.argHi+1L;
result@pv-1D = a;

forHint i=pv-1;i<t.sizeHL;i++L
result@i+1D = t.argHi+1L;
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return new TupleHresultL;<��insertElement
static public Tuple createTupleHData@D jlsL8

ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
forHint i=0;i<jls.length;i++L8

if Hjls@iD instanceof SequenceL8
forHint j=0;j<HHSequenceLjls@iDL.sizeHL;j++L

al.addHHHSequenceLjls@iDL.argHj+1LL;<��if
else

al.addHjls@iDL;<��for
ts = al.toArrayHtsL;
return new TupleHtsL;<��createTuple

static public Sequence restAsSequenceHTuple t,int nL8
Data@D s = new Data@t.sizeHL-nD;
for Hint i=n;i<t.sizeHL;i++L

s@i-nD = t.argHi+1L;
return new SequenceHsL;<��restAsSequence<��class BI_Tuple

The class BI_Set (its source code is given below), contains several (static) methods for basic opera-

tions on sets, e.g., intersection, union, insert.

public class BI_Set8
static public boolean IsSetHData a1L8

return Ha1 instanceof SetL;<��IsSet
static public Data intersectionHSet a1,Set a2L8

ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
Data x;

forHint i=1;i£a1.sizeHL;i++L
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8
x = a1.argHiL;
if Ha2.containsHxLL al.addHxL;<��for

ts = al.toArrayHtsL;
return new SetHtsL;<��intersection

static public Data intersectionHData... asL8
ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
Set a1 = HSetLas@0D;
int setCount = as.length;

Data x;

boolean b;

int j;

forHint i=1;i£a1.sizeHL;i++L8
x = a1.argHiL;
j = 1;

b = true;

whileHHj<setCountL&&bL8
if H!HHSetLas@jDL.containsHxLL

b = false;

else

j++;<��while
if HbL

al.addHxL;<��for
ts = al.toArrayHtsL;
return new SetHtsL;<��intersection

static public Data unionHSet a1,Set a2L8
ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
Data x;

forHint i=1;i£a1.sizeHL;i++L
al.addHa1.argHiLL;

forHint i=1;i£a2.sizeHL;i++L8
x = a2.argHiL;
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if H!al.containsHxLL
al.addHxL;<��for

ts = al.toArrayHtsL;
return new SetHtsL;<��union

static public Data unionHData... asL8
ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
Data x;

forHint i=0;i<as.length;i++L
forHint j=1;j£HHSetLas@iDL.sizeHL;j++L8

x = HHSetLas@iDL.argHjL;
if H!al.containsHxLL

al.addHxL;<��for
ts = al.toArrayHtsL;
return new SetHtsL;<��union

static public Data crossHSet a1,Set a2L8
int a1_size = a1.sizeHL;
int a2_size = a2.sizeHL;
int index = 0;

Data@D ts = new Data@a1_size*a2_sizeD;
forHint i=0;i<a1_size;i++L

forHint j=0;j<a2_size;j++L8
ts@indexD=new TupleHnew Data@D8a1.argHi+1L,a2.argHj+1L<L;
index++;<��for

return new SetHtsL;<��cross
static public Data crossHData... asL8

int size = as.length;

int i@D = new int@sizeD;
int total_size = 1;

int p,index;

Data@D t;

Data@D ts;
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forHint j=0;j<size;j++L8
total_size *= HHSetLas@jDL.sizeHL;
i@jD = 0;<��for

if Htotal_size�0L
return new SetHnew Data@D8<L;

ts = new Data@total_sizeD;
index = 0;

whileHi@0D<HHSetLas@0DL.sizeHLL8
t = new Data@sizeD;
forHint j=0;j<size;j++L

t@jD = HHSetLas@jDL.argHi@jD+1L;
ts@indexD = new TupleHtL;
index++;

p = size-1;

i@pD++;

whileHHp>0L&&Hi@pD�HHSetLas@pDL.sizeHLLL8
i@pD = 0;

p--;

i@pD++;<��while<��while
return new SetHtsL;<��cross

static public Data minusHSet a1,Set a2L8
ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
Data x;

forHint i=1;i£a1.sizeHL;i++L8
x = a1.argHiL;
if H!a2.containsHxLL

al.addHxL;<��for
ts = al.toArrayHtsL;
return new SetHtsL;<��minus

static public Data minusHData... asL8
ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
Set a1 = HSetLas@0D;

;
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int setCount = as.length;

Data x;

boolean b;

int j;

forHint i=1;i£a1.sizeHL;i++L8
x = a1.argHiL;
j = 1;

b = true;

whileHHj<setCountL&&bL8
if HHHSetLas@jDL.containsHxLL

b = false;

else

j++;<��while
if HbL

al.addHxL;<��for
ts = al.toArrayHtsL;
return new SetHtsL;<��minus

static public Set insertHSet s,Data aL8
Data@D result = new Data@s.sizeHL+1D;
forHint i=0;i<s.sizeHL;i++L

result@iD=s.argHi+1L;
result@s.sizeHLD=a;

return new SetHresultL;<��insert
static public Data powersetHSet aL8

int size = a.sizeHL;
int p;

int index;

Data@D ts;

if Hsize>30L��too big!

return null;

ts = new Data@H1<<sizeLD;��size of ts is 2^size

ts@0D = new SetHnew Data@D8<L;
p = 1;

index = 1;

forHint i=0;i<size;i++L
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forHint j=0;j<p;j++L8

ts@indexD = insertHHSetLts@jD,a.argHi+1LL;
index++;<��for

p*=2;<��for
return new SetHtsL;<��powerset

static public boolean isSubsetEqualHSet a1,Set a2L8
forHint i=1;i£a1.sizeHL;i++L

if H!a2.containsHa1.argHiLLL
return false;

return true;<��isSubset
��checks if a1 is a properH!L subset of a2

static public boolean isSubsetHSet a1,Set a2L8
return HHa1.sizeHL¹a2.sizeHLL&&isSubsetEqualHa1,a2LL;<��isSubset

static public boolean isSupersetEqualHSet a1,Set a2L8
return isSubsetEqualHa2,a1L;<��isSupersetEqual

static public boolean isSupersetHSet a1,Set a2L8
return isSubsetHa2,a1L;<��isSuperset<��class BI_Set

10.2.6 The Class Sequence

The class Sequence is an auxiliary class that is used for handling an arbitrary long sequence of Data

instances.

public class Sequence extends Data8
Data@D jls;

public SequenceHData... jlsL8
this.jls=jls;<��Sequence
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public Data argHint nL8
if Hn-1<jls.lengthL

return jls@n-1D;
return null;<��arg

public Data argHBI_Integer biL8
return argHbi.asIntHLL;<��arg

public boolean equalHData xL8
if H!Hx instanceof SequenceLL

return false;

Sequence xt = HSequenceLx;
if Hxt.sizeHL¹jls.lengthL

return false;

forHint i=0;i<jls.length;i++L
if H!jls@iD.equalHxt.argHi+1LLL

return false;

return true;<��equal
public int sizeHL8

return jls.length;<��size
public String toStringHL8

return toExprHL.toStringHL;<��toString
public Expr toExprHL8

Expr@D es = new Expr@jls.lengthD;
forHint i=0;i<jls.length;i++L

es@iD = jls@iD.toExprHL;
return new ExprHnew ExprHExpr.SYMBOL,"Sequence"L,esL;<��toExpr<��class Sequence
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10.2.7 The Class Factory

For  every theory  that  is  compiled  by the  user  a  class  ExtendedFactory  is  created  which provides

information on the  constructors (see  Chapter 4),  the  functions, and the  predicates  of  the corresponding

theory. The  superclass of  this factory class is  always Factory,  which basically contains methods and

fields for handling truth values.

public class Factory8
static False _false=new FalseHL;
static True _true=new TrueHL;
public static Class@D getSignatureHString methodNameL
throws NoSuchMethodException8

throw new NoSuchMethodExceptionH
String.formatH"Method %s could not be found.",methodNameLL;<��getSignature

public static Data convertBooleanToDataHboolean bL8
if HbL

return getTrueHL;
else

return getFalseHL;<��convertBooleanToData
public static Data getFalseHL8

return _false;<��getFalse
public static Data getTrueHL8

return _true;<��getTrue
public static Data getInstanceHString className,Data@D argsL
throws ClassNotFoundException8

if HclassName.equalsH"False"LL
return _false;

if HclassName.equalsH"True"LL
return _true;

throw new ClassNotFoundExceptionH
String.formatH"Class %s with %d parameters could not be found.",

className,args.lengthLL;<��getInstance<��Factory
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10.2.8 The Class Constants

This class contains several useful constants as static fields.

public class Constants8
public static final String USER_THEORIES = "JavaCompiler.User.Theories";

public static final String USER_DOMAINS = "JavaCompiler.User.Domains";

public static final String USER_DOMAINS_CONSTRUCTORS =

"JavaCompiler.User.Domains._Constructors";

public static final char TRADEMARK = 8482;

public static final char EPSILON = 1013;

public static final char DASH = 8211;

public static final char INTEGERS = 63409;��dsN
public static final char RATIONALS = 63412;��dsQ
public static final String sDASH = String.valueOfHDASHL;<��class Constants

10.3 The Package BasicDomains

The classes of the package BasicDomains comprise basic and specific classes that are needed for the

translation of functors and domains from Theorema to Java.

10.3.1 The Interface Domain

The interface Domain is an empty interface and has to be implemented by all classes which represent a

domain.

10.3.2 The Classes Integers, Rationals, and IntegersMod5

The  classes  Integers,  Rationals,  and  IntegersMod5  implement  the  interface  Domain  and

represent  the  domain  of  integers,  the  domain  of  rational  numbers,  and  the  domain  of  integers  modulo

five,  respectively.  Since  the  implementations  of  these  classes  are  quite  lengthy,  we  only  present  the

compactly formatted code of Rationals:

public class Rationals implements Domain8
private static BI_Rational zero=BI_Rational.ZERO;

private static BI_Rational one=BI_Rational.ONE;

public static boolean isElementHData xL8return HHx instanceof BI_RationalLÈÈHx instanceof BI_IntegerLL;<
public static boolean elementHData xL8return isElementHxL;<
public static BI_Rational plusHBI_Rational a1,BI_Rational a2L8return a1.addHa2L;<
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public static BI_Rational plusHBI_Integer a1,BI_Rational a2L8return a1.asBIRationalHL.addHa2L;<
public static BI_Rational plusHBI_Rational a1,BI_Integer a2L8return a1.addHa2.asBIRationalHLL;<
public static BI_Rational plusHBI_Integer a1,BI_Integer a2L8return a1.asBIRationalHL.addHa2.asBIRationalHLL;<
public static BI_Rational plusHData... asL8

BI_Rational result = BI_Rational.ZERO;

for Hint i=0;i<as.length;i++L 8
if Has@iD instanceof BI_IntegerL result = plusHresult,HBI_IntegerLas@iDL;
else result = plusHresult,HBI_RationalLas@iDL;<��for

return result;<��plus
public static BI_Rational minusHBI_Integer a1,BI_Integer a2L8return a1.minusHa2L.asBIRationalHL;<
public static BI_Rational minusHBI_Integer a1,BI_Rational a2L8return a1.asBIRationalHL.minusHa2L;<
public static BI_Rational minusHBI_Rational a1,BI_Integer a2L8return a1.minusHa2.asBIRationalHLL;<
public static BI_Rational minusHBI_Rational a1,BI_Rational a2L8return a1.minusHa2L;<
public static BI_Rational minusHBI_Rational a1L8return a1.minusHL;<
public static BI_Rational minusHBI_Integer a1L8return a1.minusHL.asBIRationalHL;<
public static BI_Rational minusHData... asL8

BI_Rational result;

if Has@0D instanceof BI_IntegerL result = HHBI_IntegerLas@0DL.asBIRationalHL;
else result = HBI_RationalLas@0D;
if Has.length�1L return result.minusHL;
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL result = minusHresult,HBI_IntegerLas@iDL;
else result=minusHresult,HBI_RationalLas@iDL;<��for

return result;<��minus
public static BI_Rational times
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public static BI_Rational timesHBI_Integer a1,BI_Integer a2L8return a1.multiplyHa2L.asBIRationalHL;<
public static BI_Rational timesHBI_Integer a1,BI_Rational a2L8return a1.asBIRationalHL.multiplyHa2L;<
public static BI_Rational timesHBI_Rational a1,BI_Integer a2L8return a1.multiplyHa2.asBIRationalHLL;<
public static BI_Rational timesHBI_Rational a1,BI_Rational a2L8return a1.multiplyHa2L;<
public static BI_Rational timesHData... asL8

BI_Rational result=BI_Rational.ONE;

for Hint i=0;i<as.length;i++L 8
if Has@iD instanceof BI_IntegerL result = timesHresult,HBI_IntegerLas@iDL;
else result = timesHresult,HBI_RationalLas@iDL;<��for

return result;<��times
public static BI_Rational divideHBI_Integer a1,BI_Integer a2L8return divideHa1.asBIRationalHL,a2.asBIRationalHLL;<
public static BI_Rational divideHBI_Integer a1,BI_Rational a2L8return a1.asBIRationalHL.divideHa2L;<
public static BI_Rational divideHBI_Rational a1,BI_Integer a2L8return a1.divideHa2.asBIRationalHLL;<
public static BI_Rational divideHBI_Rational a1,BI_Rational a2L8return a1.divideHa2L;<
public static BI_Rational divideHData... asL8

BI_Rational result;

if Has@0D instanceof BI_IntegerL result = HHBI_IntegerLas@0DL.asBIRationalHL;
else result=HBI_RationalLas@0D;
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL
result = divideHresult,HBI_IntegerLas@iDL;

else result = divideHresult,HBI_RationalLas@iDL;<��for
return result;<��divide

public static BI_Rational powerHBI_Integer a1,BI_Integer a2L8return BI_Rational.valueOfHa1.powHa2L,BI_Integer.ONEL;<
public static BI_Rational powerHBI_Rational a1,BI_Integer a2L8return a1.powHa2L;<
public static BI_Rational power
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public static BI_Rational powerHData... asL8
BI_Rational result;

if Has@0D instanceof BI_RationalL result = HBI_RationalLas@0D;
else result = HHBI_IntegerLas@0DL.asBIRationalHL;
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL
result = powerHresult,HBI_IntegerLas@iDL;

else if HHHBI_RationalLas@iDL.getDivisorHL.equalsHBigInteger.ONELL
result = powerHresult,

BI_Integer.valueOfHHHBI_RationalLas@iDL.getDividendHLLL;
else return null;<��for

return result;<��power
public static BI_Rational maxHBI_Rational a1,BI_Rational a2L8if Ha1.isGreaterHa2LL return a1;else return a2;<
public static BI_Rational maxHBI_Rational a1,BI_Integer a2L8

BI_Rational rat = a2.asBIRationalHL;
if Ha1.isGreaterHratLL return a1;else return rat;<��max

public static BI_Rational maxHBI_Integer a1,BI_Rational a2L8
BI_Rational rat = a1.asBIRationalHL;
if Hrat.isGreaterHa2LL return rat;else return a2;<��max

public static BI_Rational maxHBI_Integer a1,BI_Integer a2L8
BI_Rational rat1 = a1.asBIRationalHL;
BI_Rational rat2 = a2.asBIRationalHL;
if Hrat1.isGreaterHrat2LL return rat1;else return rat2;<��max

public static BI_Rational maxHData... asL8
BI_Rational result;

if Has@0D instanceof BI_IntegerL result = HHBI_IntegerLas@0DL.asBIRationalHL;
else result = HBI_RationalLas@0D;
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL result = maxHresult,HBI_IntegerLas@iDL;
else result = maxHresult,HBI_RationalLas@iDL;<��for

return result;<��max
public static BI_Rational minHBI_Rational a1,BI_Rational a2L8if Ha1.isGreaterHa2LL return a2;else return a1;<
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public static BI_Rational minHBI_Rational a1,BI_Integer a2L8
BI_Rational rat = a2.asBIRationalHL;
if Ha1.isGreaterHratLL return rat;else return a1;<��min

public static BI_Rational minHBI_Integer a1,BI_Rational a2L8
BI_Rational rat = a1.asBIRationalHL;
if Hrat.isGreaterHa2LL return a2;else return rat;<��min

public static BI_Rational minHBI_Integer a1,BI_Integer a2L8
BI_Rational rat1 = a1.asBIRationalHL;
BI_Rational rat2 = a2.asBIRationalHL;
if Hrat1.isGreaterHrat2LL return rat2;else return rat1;<��min

public static BI_Rational minHData... asL8
BI_Rational result;

if Has@0D instanceof BI_IntegerL result = HHBI_IntegerLas@0DL.asBIRationalHL;
else result = HBI_RationalLas@0D;
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL result = minHresult,HBI_IntegerLas@iDL;
else result = minHresult,HBI_RationalLas@iDL;<��for

return result;<��min
public static boolean lessHBI_Rational a1,BI_Rational a2L8if Ha1.isLessHa2LL return true;else return false;<
public static boolean lessHBI_Rational a1,BI_Integer a2L8

BI_Rational rat = a2.asBIRationalHL;
if Ha1.isLessHratLL return true;else return false;<��less

public static boolean lessHBI_Integer a1,BI_Rational a2L8
BI_Rational rat = a1.asBIRationalHL;
if Hrat.isLessHa2LL return true;else return false;<��less

public static boolean lessHBI_Integer a1,BI_Integer a2L8
BI_Rational rat1 = a1.asBIRationalHL;
BI_Rational rat2 = a2.asBIRationalHL;
if Hrat1.isLessHrat2LL return true;else return false;<��less
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public static boolean lessHData... asL8
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL 8
if Has@i-1D instanceof BI_IntegerL 8

if H!lessHHBI_IntegerLas@i-1D,HBI_IntegerLas@iDLL return false;< else if Has@i-1D instanceof BI_RationalL 8
if H!lessHHBI_RationalLas@i-1D,HBI_IntegerLas@iDLL return false;< else return false;< else if Has@iD instanceof BI_RationalL 8

if Has@i-1D instanceof BI_IntegerL 8
if H!lessHHBI_IntegerLas@i-1D,HBI_RationalLas@iDLL return false;< else if Has@i-1D instanceof BI_RationalL 8
if H!lessHHBI_RationalLas@i-1D,HBI_RationalLas@iDLL return false;< else return false;< else return false;<��for

return true;<��less
public static boolean greaterHBI_Rational a1,BI_Rational a2L8if Ha1.isGreaterHa2LL return true;else return false;<
public static boolean greaterHBI_Rational a1,BI_Integer a2L8

BI_Rational rat = a2.asBIRationalHL;
if Ha1.isGreaterHratLL return true;else return false;<��greater

public static boolean greaterHBI_Integer a1,BI_Rational a2L8
BI_Rational rat = a1.asBIRationalHL;
if Hrat.isGreaterHa2LL return true;else return false;<��greater

public static boolean greaterHBI_Integer a1,BI_Integer a2L8
BI_Rational rat1 = a1.asBIRationalHL;
BI_Rational rat2 = a2.asBIRationalHL;
if Hrat1.isGreaterHrat2LL return true;else return false;<��greater

public static boolean greaterHData... asL8
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL 8
if Has@i-1D instanceof BI_IntegerL 8

if H!greaterHHBI_IntegerLas@i-1D,HBI_IntegerLas@iDLL
return false;< else if Has@i-1D instanceof BI_RationalL 8

if H!greaterHHBI_RationalLas@i-1D,HBI_IntegerLas@iDLL
return false;< else return false;< else if
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< else if Has@iD instanceof BI_RationalL 8
if Has@i-1D instanceof BI_IntegerL 8

if H!greaterHHBI_IntegerLas@i-1D,HBI_RationalLas@iDLL
return false;< else if Has@i-1D instanceof BI_RationalL 8

if H!greaterHHBI_RationalLas@i-1D,HBI_RationalLas@iDLL
return false;< else return false;< else return false;<��for

return true;<��greater
public static boolean lessEqualHBI_Rational a1,BI_Rational a2L8if Ha1.isLessEqualHa2LL return true;else return false;<
public static boolean lessEqualHBI_Rational a1,BI_Integer a2L8

BI_Rational rat = a2.asBIRationalHL;
if Ha1.isLessEqualHratLL return true;else return false;<��lessEqual

public static boolean lessEqualHBI_Integer a1,BI_Rational a2L8
BI_Rational rat = a1.asBIRationalHL;
if Hrat.isLessEqualHa2LL return true;else return false;<��lessEqual

public static boolean lessEqualHBI_Integer a1,BI_Integer a2L8
BI_Rational rat1 = a1.asBIRationalHL;
BI_Rational rat2 = a2.asBIRationalHL;
if Hrat1.isLessEqualHrat2LL return true;else return false;<��lessEqual

public static boolean lessEqualHData... asL8
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL 8
if Has@i-1D instanceof BI_IntegerL 8

if H!lessEqualHHBI_IntegerLas@i-1D,HBI_IntegerLas@iDLL
return false;< else if Has@i-1D instanceof BI_RationalL 8

if H!lessEqualHHBI_RationalLas@i-1D,HBI_IntegerLas@iDLL
return false;< else return false;< else if Has@iD instanceof BI_RationalL 8

if Has@i-1D instanceof BI_IntegerL 8
if H!lessEqualHHBI_IntegerLas@i-1D,HBI_RationalLas@iDLL

return false;< else if Has@i-1D instanceof BI_RationalL 8
if H!lessEqualHHBI_RationalLas@i-1D,HBI_RationalLas@iDLL

return false;< else return false;< else return false;
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< else return false;<��for
return true;<��lessEqual

public static boolean greaterEqualHBI_Rational a1,BI_Rational a2L8if Ha1.isGreaterEqualHa2LL return true;else return false;<
public static boolean greaterEqualHBI_Rational a1,BI_Integer a2L8

BI_Rational rat = a2.asBIRationalHL;
if Ha1.isGreaterEqualHratLL return true;else return false;<��greaterEqual

public static boolean greaterEqualHBI_Integer a1,BI_Rational a2L8
BI_Rational rat = a1.asBIRationalHL;
if Hrat.isGreaterEqualHa2LL return true;else return false;<��greaterEqual

public static boolean greaterEqualHBI_Integer a1,BI_Integer a2L8
BI_Rational rat1 = a1.asBIRationalHL;
BI_Rational rat2 = a2.asBIRationalHL;
if Hrat1.isGreaterEqualHrat2LL return true;else return false;<��greaterEqual

public static boolean greaterEqualHData... asL8
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL 8
if Has@i-1D instanceof BI_IntegerL 8

if H!greaterEqualHHBI_IntegerLas@i-1D,HBI_IntegerLas@iDLL
return false;< else if Has@i-1D instanceof BI_RationalL 8

if H!greaterEqualHHBI_RationalLas@i-1D,HBI_IntegerLas@iDLL
return false;< else return false;< else if Has@iD instanceof BI_RationalL 8

if Has@i-1D instanceof BI_IntegerL 8
if H!greaterEqualHHBI_IntegerLas@i-1D,HBI_RationalLas@iDLL

return false;< else if Has@i-1D instanceof BI_RationalL 8
if H!greaterEqualHHBI_RationalLas@i-1D,HBI_RationalLas@iDLL

return false;< else return false;< else return false;<��for
return true;<��greaterEqual

public static Data constantsHString nameL8
if Hname.equalsH"0"LL return zero;

;
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if Hname.equalsH"1"LL return one;

return null;<��Constants
public static String getDomainNameHL8return String.valueOfHConstants.RATIONALSL;<<��class Rationals

10.3.3 The Class DomainData

The class DomainData is derived from Data and encapsulates a domain class (e.g., the class Ratio-

nals), i.e., it stores a class object in its private field domainClass. DomainData is used to pass a

domain  as  a  parameter  to  a  method,  which  can  then  use  the  method  call  to  invoke  methods  of  the

encapsulated domain.

public class DomainData extends Data8
private Class domainClass;

public DomainDataHClass domainClassL8
this.domainClass=domainClass;<��DomainData

public Data callHString methodName,Class@D classes,Object@D argsL8
try8

return HDataLHHClass<?>LdomainClassL.
getDeclaredMethodHmethodName,classesL.invokeHnull,argsL;<

catch HNoSuchMethodException exL8
Data@D ds=new Data@args.lengthD;
forHint i=0;i<args.length;i++L

ds@iD = HDataLargs@iD;
try8

return HDataLHHClass<?>LdomainClassL.getDeclaredMethodHmethodName,
new Class@D8Data@D.class<L.invokeHnull,new Object@D8ds<L;<��try

catch HException exxL8
exx.printStackTraceHL;
return null;<��catch<��catch

catch HException exL8
return null;<��catch
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<��catch<��call
public Data argHint nL8

return null;<��arg
public boolean equalHData xL8

return false;<��equal
public String toStringHL8

return null;<��toString
public Expr toExprHL8

try8
return new ExprHExpr.SYMBOL,HStringLHHClass<?>LdomainClassL.

getDeclaredMethodH"getDomainName",HClass@DLnullL.
invokeHnull,HObject@DLnullLL;<��try

catch HException eL8
return null;<��catch<��toExpr<��DomainData

10.4 The JavaComputer Class

The  class  JavaComputer  is  an  interface  between Theorema and  Java.  The  three  commands Java–

Compute,  Java–UseTheories,  and  Java–UseDomains  (see  Chapter 8)   pass  their  arguments

directly  to  an  instance  of  this  class,  which  is  created  during  the  initialization  of  the  Theorema-Java

Compiler.  JavaComputer  implements  basically  the  following  methods,  which  correspond  to  these

three user commands:

è compute: This method takes an expression (i.e., an object of type com.wolfram.jlink.-

Expr),  evaluates  it,  and  returns  the  result.  It  is  the  central  method  which  is  able  to  handle

integers and rational numbers, to create Tuple objects,  to instantiate encapsulating objects for

higher order functions, and, of course, call methods defined in theories and domains.

è useTheories:  This  method takes  a  list  of  theory names as  strings,  loads  the  corresponding

Java  classes (i.e.,  calls  the method loadClass  of  the  default class loader),  and builds  up an

internal table of the methods of the loaded theories.

è useDomains:  This  method  takes  a  list  of  domain  names  and  loads  (i.e.,  calls  the  method

loadClass of the default class loader) the corresponding Java classes.
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è

useDomains:  This  method  takes  a  list  of  domain  names  and  loads  (i.e.,  calls  the  method

loadClass of the default class loader) the corresponding Java classes.
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Part 2

Case Studies

In  this  part  of  the  thesis  we  will  present  two  case  studies  which show the  power  and  usability  of  the

Theorema-Java Compiler.

  The first case study is on Gröbner Bases, and we will define there several functors to compute a so-

called Gröbner Extension of a given ring. All the functors which will be presented in the course of this

case study are based on the work of Bruno Buchberger in [Buch03].

In the second case study we will use Neville's algorithm for the interpolation of univariate polynomi-

als. The functor and algorithms presented in that part are based on [Wind06].

Before  we  actually  start,  let  us  quit  the  current  Mathematica  kernel  and  reload  Theorema  and  the

Theorema-Java Compiler.

Needs@"Theorema`"D
Needs@"Theorema`JavaCompiler`JavaCompiler "̀D

Additionally, we set Mathematica's $RecursionLimit and $IterationLimit to Infinity:

$RecursionLimit = Infinity;

$IterationLimit = Infinity;

11 Gröbner Bases

In this chapter we will present, after some preparatory work, the functor Groebner-Extension that

takes a so-called reduction ring R and returns R augmented by a function which computes Gröbner Bases

in  R.  First,  we  will  define  several  auxiliary functors  for  computing in  reduction  rings  and  with power

products represented by tuples. We will shortly explain these functors and give some exemplary computa-

tions  in  Theorema.  Then,  we  will  present  the  functor  Groebner-Extension,  compute  Gröbner

Bases in several domains, and compare the computing times of original Theorema and Java code created

by the Theorema-Java Compiler.

The functors presented in this chapter were originally developed by Bruno Buchberger in [Buch03]

and then adopted by the author of this thesis.



11.1 The Functor ReductionField

The following functor ReductionField takes a field D and adds the operations rdm and lcrd. For

details on these operations we refer again to [Buch03].

DefinitionB"Reduction Field" , any@DD,
ReductionField@DD = FunctorBN, any@x, yD,

s = X\
Î
N

@xD � Î
D

@xD
0
N

= 0
D

1
N

= 1
D

x +
N
y = x +

D
y

-
N
x = -

D
x

x -
N
y = x -

D
y

x*
N
y = x*

D
y

x�
N
y = x�

D
y

x >
N
y � x >

D
y

rdm
N

@x, yD =
x�

D
y Ü x ¹ 0

D
í y ¹ 0

D

0
D

Ü otherwise

lcrd
N

@x, yD =
1
D

Ü x ¹ 0
D

í y ¹ 0
D

0
D

Ü otherwise

FF

11.2 The Functor TuplesLex

The functor TuplesLex takes an integer k and produces a domain of lexical ordered tuples of length k. 
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DefinitionB"Tuples Lexical Ordering", any@kD,
TuplesLex@kD =

FunctorBN, any@x, y, x�, y�D,
s = X\
Î
N

@xD � í
is|tuple@xD x¤ = k

"
i=1,¼,k

í Î
N
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È
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N
X\ � False

Xx, x�\ >
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True Ü x > yXx�\ >
N

Xy�\ Ü Hx = yL
False Ü otherwise

deg
N

@X\D = -1

deg
N

@xD = Ú
i=1,¼,k

xi

isDisjunct
N

@x, yD � "
i=1,¼, x¤ HHxi = 0L ê Hyi = 0LL

FF
TheoryB"TuplesLex",
Definition@"Tuples Lexical Ordering"D

TupLex2 = TuplesLex@2D
TupLex3 = TuplesLex@3D
TupLex4 = TuplesLex@4D

F

11.3 The Functor TuplesDeg

The functor TuplesDeg  takes a  domain that is returned by TuplesLex  and replaces its predicate  >

by a new one which applies the degree lexicographic ordering.
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DefinitionB"Tuples Degree Lexical Ordering" , any@DD,
TuplesDeg@D D =

FunctorBN, any@x, yD,
s = X\
Î
N

@xD � Î
D

@xD
1
N

= 1
D

x*
N
y = x*

D
y

x�
N
y = x�

D
y

x ý
N
y � x ý

D
y
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@x, yD = lcm
D

@x, yD
x >

N
y � whereBd = deg

D
@xD, e = deg

D
@yD, ë d > e

í d = e
x >

D
y

F
isDisjunct

N
@x, yD � isDisjunct

D
@x, yD

FF
TheoryB"TuplesDeg",
Definition@"Tuples Degree Lexical Ordering" D

TupDeg2 = TuplesDeg@TupLex2D
TupDeg3 = TuplesDeg@TupLex3D
TupDeg4 = TuplesDeg@TupLex4D

F

For a better understanding of the two previous functors we want to show some exemplary computations

and, for that, build the following knowledge base:

Use@XBuilt|in@"Tuples"D, Built|in@"Quantifiers"D,
Built|in@"Connectives"D, Built|in@"Numbers"D,
Built|in@"Number Domains"D, Theory@"TuplesLex"D, Theory@"TuplesDeg"D\D

Multiplying two tuples means adding their entries componentwise:

ComputeBX1, 2, 3\ *
TupLex3

X4, 5, 6\F
X5, 7, 9\

Furthermore, we my compute:

ComputeBX1, 1, 3\ >
TupDeg3

X1, 2, 1\F
True
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ComputeBX1, 1, 3\ >
TupLex3

X1, 2, 1\F
False

11.4 The Functor Poly

The  functor Poly  constructs a  domain of  polynomials from a  given coefficient domain C  and a  given

domain T of power products represented by tuples. 

DefinitionB"Polynomial Functor", any@C, TD,
Poly@C, TD =

FunctorBN, any@x, y, z, c, t, xs, xs, d, s, ys, ys, p, q, f, m�, n�D,
s = X\
Î
N

@X\D � True

Î
N

@XXc, s\, xs\D � í :

Î
C

@cD
Î
T

@sD
c ¹ 0

C

s >
T
LPP
N

@Xxs\D
Î
N

@Xxs\D
Î
N

@xsD � False

1
N

= [[1
C
, 1

T
__

0
N

= X\
LPP
N

@X\D = X\
LPP
N

@XXc, s\, xs\D = s

areLPPDisjunct
N

@x, yD � isDisjunct
T

BLPP
N

@xD, LPP
N

@yDF
lcmLPP

N
@x, yD = lcm

T
BLPP

N
@xD, LPP

N
@yDF

isTermDivisible
N

@x, yD � Kx ý
T
yO

isTermGreater
N

@x, yD � Kx >
T
yO
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X\ +
N
q = q

p +
N

X\ = p

XXc, s\, m�\ +
N

XXd, t\, n�\ =

Xc, s\ \ JXm�\ +
N

XXd, t\, n�\N Ü s >
T
t

Xd, t\ \ JXXc, s\, m�\ +
N

Xn�\N Ü t >
T
s

[c +
C
d, s_ \ JXm�\ +

N
Xn�\N Ü c ¹ -

C
d

Xm�\ +
N

Xn�\ Ü otherwise

-
N

X\ = X\
-
N

XXc, s\, m�\ = Z-
C
c, s^ \ J-

N
Xm�\N

p -
N
q = p +

N
J-
N
qN

p*
N

X\ = X\
X\ *

N
q = X\

XXc, s\, m�\ *
N

XXd, t\, n�\ = K[[c*
C
d, s*

T
t__ +

N
XXc, s\\ *

N
Xn�\O +

N
Xm�\ *

N
XXd, t\, n�\

KX\ >
N
pO � False

KXXc, s\, m�\ >
N

X\O � True

KXXc, s\, m�\ >
N

XXd, t\, n�\O � ë

s >
T
t

í s = t
c >

C
d

í
s = t
c = dXm�\ >

N
Xn�\

norm
N

@X\, fD = X\
norm

N
@XXc, s\, m�\, fD = [c�

C
f, s_ \norm

N
@Xm�\, fD

rdm
N

@X\, pD = 0
N

rdm
N

@XXc, s\, m�\, X\D = 0
N

rdm
N

@XXc, s\, m�\, XXd, t\, n�\D =
[[rdm

C
@c, dD, s�

T
t__ Ü í rdm

C
@c, dD ¹ 0

C

t ý
T
s

0
N

Ü otherwise

lcrd
N

@XXc, s\, m�\, XXd, t\, n�\D = [[lcrd
C

@c, dD, lcm
T

@s, tD__

FF
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TheoryB"Poly",
Definition@"Reduction Field"D

Definition@"Polynomial Functor"D
QRed = ReductionField@QD

Poly2LexQ = Poly@QRed, TupLex2D
Poly3LexQ = Poly@QRed, TupLex3D
Poly4LexQ = Poly@QRed, TupLex4D
Poly2DegQ = Poly@QRed, TupDeg2D
Poly3DegQ = Poly@QRed, TupDeg3D
Poly4DegQ = Poly@QRed, TupDeg4D

F

The theory "Poly" defines the domain QRed by applying the functor ReductionField to Theorema's

built-in domain Q  and  three  polynomial domains over  QRed  in  two,  three,  and  four  variables.  For  the

following computations we add this theory to our knowledge base:

UseAlso@XTheory@"Poly"D\D
The  two  polynomials  over  Q  in  3  variables  -5 x y2 + 2 y z2  and  x z-3  are  represented  by

XX-5, X1, 2, 0\\, X2, X0, 1, 2\\\  and  XX1, X1, 0, 1\\, X-3, X0, 0, 0\\\,  respectively.  Their  product  can  be

computed in Theorema:

ComputeB
XX-5, X1, 2, 0\\, X2, X0, 1, 2\\\ *

Poly3DegQ
XX1, X1, 0, 1\\, X-3, X0, 0, 0\\\F

XX-5, X2, 2, 1\\, X2, X1, 1, 3\\, X15, X1, 2, 0\\, X-6, X0, 1, 2\\\

We may check this result with Mathematica:

ExpandAI-5 x y2 + 2 y z2M * Hx z - 3LE
15 x y2 + H-5L x2 y2 z + H-6L y z2 + 2 x y z3

We can also normalize the product, i.e., divide its coefficients by -5:

ComputeB norm
Poly3DegQ

BXX-5, X1, 2, 0\\, X2, X0, 1, 2\\\ *
Poly3DegQ

XX1, X1, 0, 1\\, X-3, X0, 0, 0\\\, -5FF
[X1, X2, 2, 1\\, [ -2

5
, X1, 1, 3\_, X-3, X1, 2, 0\\, [6

5
, X0, 1, 2\__
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11.5 The Functor Groebner–extension

Finally,  we  define  the  functor  Groebner–extension,  which  takes  a  domain  R  (returned  by  the

functor Poly) and produces a domain that provides the following three operations to compute a Gröbner

Basis of a given set X of elements of R's carrier:

è Gb[X]  computes  a  (not  necessarily  reduced)  Gröbner  Basis  of  X  by  applying  the  classical,

straight forward Buchberger algorithm without using Buchberger's criteria.

è rdGb[X]  computes  the  reduced  Gröbner  Basis  of  X  by  computing  Gb[X]  and  afterwards

reducing the result.

è rdGbBC12[X] computes the reduced Gröbner Basis of X by applying Buchberger's algorithm

and using the first and the second criterion of Buchberger.

All further details on this functor are given in [Buch03] and [Hibe95].

DefinitionB"Groebner extension" , any@RD,
Groebner|extension@RD =

FunctorBN, any@C, k, p, q, p�, q�, x, x�, g, g�, X, y, y�, Y, h, s, c, f, MD,
s = X\
Î
N

@xD � Î
R

@xD
0
N

= 0
R

1
N

= 1
R

x +
N
y = x +

R
y

-
N
x = -

R
x

x -
N
y = x -

R
y

x*
N
y = x*

R
y

x >
N
y � x >

R
y

rdm
N

@x, yD = rdm
R

@x, yD
lcrd

N
@x, yD = lcrd

R
@x, yD

rd
N

@x, yD = x -
N
rdm
N

@x, yD *
N
y

trd
N

@x, YD = trd
N

@x, Y, 1D
trd
N

@x, Y, kD =

x Ü k >  Y¤
whereBx1 = rd

N
@x, YkD,

trd
N

@x1, Y, 1D Ü x >
N
x1

trd
N

@x, Y, k + 1D Ü otherwise
F

Ü otherwise
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hrd
N

@p, YD = whereBh = trd
N

@p, YD, p Ü h = p

trd
N

@h, YD Ü otherwise F
frd
N

@p, YD = frd
N

@p, Y, X\D
frd
N

@p, Y, XD = frd
N

Bp, Y, X, hrd
N

@p, YDF
frd
N

@p, Y, X, hD =

X Ü h = 0
N

whereBlth = h1, frd
N

Ah -
N

Xlth\, Y, X [ lthEF Ü otherwise

cpd
N

@x, yD = whereBlxy = lcrd
N

@x, yD, rd
N

@lxy, xD -
N
rd
N

@lxy, yDF
isCriterion2

N
@x, y, X\D � False

isCriterion2
N

Ax, y, YXp, f, g\, y
�]E �

True Ü Hx = fL ì Hy = gL
True Ü Hx = gL ì Hy = fL
isCriterion2

N
Ax, y, Xy�\E Ü otherwise

isCriterion2
N

@x, y, X\, MD � False

isCriterion2
N

Ax, y, Yg, g
�], ME �

: True Ü í :

x ¹ g

y ¹ g

isTermDivisible
R

BLPP
R

@gD, lcmLPP
R

@x, yDF
NotBisCriterion2

N
@x, g, MDF

NotBisCriterion2
N

@y, g, MDF
isCriterion2

N
Ax, y, Xg�\, ME Ü otherwise

pairs
N

@X\D = X\
pairs

N
AYx, x

�]E = [Yx, Xx�\i] È
i=1,¼,¡Xx�\¥_ ^ pairs

N
AXx�\E

ard
N

@X\D = X\
ard
N

AYp, p
�]E = ard

N
AX\, p, Xp�\E

ard
N

@X, p, X\D = whereBh = frd
N

@p, XD, : X Ü h = 0
N

X [ norm
N

@hD Ü otherwise
F

ard
N

AX, p, Yq, q
�]E = whereBh = frd

N
Ap, X ^ Yq, q

�]E,
: ard

N
AX, q, Xq�\E Ü h = 0

N

ard
N

BX [ norm
N

@hD, q, Xq�\F Ü otherwise
F

norm
N

AYXc, s\, x
�]E = norm

R
AYXc, s\, x

�], cE
tcrd

N
@x, YD = tcrd

N
Bx, Y, 1, [0

N
È

i=1,¼, Y¤_F
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tcrd
N

@x, Y, k, CD =

Xx, C\ Ü k >  Y¤
whereBc = rdm

N
@x, YkD, x1 = x -

N
rdm
N

@x, YkD *
N
Yk,

tcrd
N

Bx1, Y, 1, Ck{Ck+
N
cF Ü x >

N
x1

tcrd
N

@x, Y, k + 1, CD Ü otherwise
F

Ü otherwise

Gb
N

@XD = Gb
N

BX, pairs
N

@XDF
Gb
N

@X, X\D = X

Gb
N

@X, XXx, y\, x�\D = whereBh = trd
N

Bcpd
N

@x, yD, XF,
Gb
N

@X, Xx�\D Ü h = 0
N

Gb
N

BX[h, Xx�\ ^ [XXi, h\ È
i=1,¼, X¤_F Ü otherwise

F
GbBC12

N
@XD = GbBC12

N
BX, GbBC12Aux

N
Bpairs

N
@XD, X\FF

GbBC12
N

@X, X\D = X

GbBC12
N

@X, XXp, x, y\, x�\D =

GbBC12Aux2
N

@x, y, X, Xx�\D Ü í : NotBareLPPDisjunct
R

@x, yDF
NotBisCriterion2

N
@x, y, X, Xx�\DF

GbBC12
N

@X, Xx�\D Ü otherwise

GbBC12Aux
N

@X\, MD = M

GbBC12Aux
N

@XXx, y\, x�\, MD =

GbBC12Aux
N

BXx�\, GbBC12Aux
N

BlcmLPP
R

@x, yD, x, y, MFF
GbBC12Aux

N
@p, x, y, X\D = XXp, x, y\\

GbBC12Aux
N

@p, x, y, XXq, f, g\, x�\D =

Xp, x, y\ \ XXq, f, g\, x�\ Ü isTermGreater
R

@q, pD
Xq, f, g\ \GbBC12Aux

N
@p, x, y, Xx�\D Ü otherwise

GbBC12Aux2
N

@x, y, X, MD = whereBh = trd
N

Bcpd
N

@x, yD, XF,
GbBC12

N
@X, MD Ü h = 0

N

GbBC12
N

Bh\X, GbBC12Aux2
N

@h, X, MDF Ü otherwise
F

GbBC12Aux2
N

@h, X\, MD = M

GbBC12Aux2
N

@h, Xx, x�\, MD =

GbBC12Aux2
N

Bh, Xx�\, GbBC12Aux
N

BlcmLPP
R

@h, xD, h, x, MFF
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rdGb
N

@XD = ard
N

BGb
N

@XDF
rdGbBC12

N
@XD = ard

N
BGbBC12

N
@XDF

FF
TheoryB"GB",

Definition@"Groebner extension"D
GB2LexQ = Groebner|extension@Poly2LexQD
GB2DegQ = Groebner|extension@Poly2DegQD
GB3LexQ = Groebner|extension@Poly3LexQD
GB3DegQ = Groebner|extension@Poly3DegQD
GB4LexQ = Groebner|extension@Poly4LexQD
GB4DegQ = Groebner|extension@Poly4DegQD

F

We add the theory "GB" to our current knowledge base:

UseAlso@XTheory@"GB"D\D
We may now compute, for instance, the reduced Gröbner Basis of two polynomials over Q with respect

to the lexicographic term ordering:

ComputeB rdGb
GB2LexQ

@XXX1, X1, 0\\, X-1, X0, 1\\, X-5, X0, 0\\\,
XX1, X1, 1\\, X-1, X1, 0\\, X3, X0, 0\\\\DF

XXX1, X1, 0\\, X-1, X0, 1\\, X-5, X0, 0\\\,
XX1, X0, 2\\, X4, X0, 1\\, X-2, X0, 0\\\\

Hence, the reduced Gröbner Basis of 8x - y - 5, x y - x + 3< is 9x - y - 5, y2 + 4 y - 2=.

11.6 Compilation to Java

Now, we want to create all these domains which we defined in Theorema also on the Java side:

Java|DeclareDomain@TupLex2 = TuplesLex@2D,
Definition@"Tuples Lexical Ordering"DD
Java|DeclareDomain@TupLex3 = TuplesLex@3D,
Definition@"Tuples Lexical Ordering"DD
Java|DeclareDomain@TupLex4 = TuplesLex@4D,
Definition@"Tuples Lexical Ordering"DD
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Java|DeclareDomain@TupDeg2 = TuplesDeg@TupLex2D,
Definition@"Tuples Degree Lexical Ordering" DD
Java|DeclareDomain@TupDeg3 = TuplesDeg@TupLex3D,
Definition@"Tuples Degree Lexical Ordering" DD
Java|DeclareDomain@TupDeg4 = TuplesDeg@TupLex4D,
Definition@"Tuples Degree Lexical Ordering" DD
Java|DeclareDomain@QRed = ReductionField@QD,
Definition@"Reduction Field"DD
Java|DeclareDomain@Poly2LexQ = Poly@QRed, TupLex2D,
Definition@"Polynomial Functor"DD
Java|DeclareDomain@Poly3LexQ = Poly@QRed, TupLex3D,
Definition@"Polynomial Functor"DD
Java|DeclareDomain@Poly4LexQ = Poly@QRed, TupLex4D,
Definition@"Polynomial Functor"DD
Java|DeclareDomain@Poly2DegQ = Poly@QRed, TupDeg2D,
Definition@"Polynomial Functor"DD
Java|DeclareDomain@Poly3DegQ = Poly@QRed, TupDeg3D,
Definition@"Polynomial Functor"DD
Java|DeclareDomain@Poly4DegQ = Poly@QRed, TupDeg4D,
Definition@"Polynomial Functor"DD
Java|DeclareDomain@GB2LexQ = Groebner|extension@Poly2LexQD,
Definition@"Groebner extension"DD
Java|DeclareDomain@GB3LexQ = Groebner|extension@Poly3LexQD,
Definition@"Groebner extension"DD
Java|DeclareDomain@GB3DegQ = Groebner|extension@Poly3DegQD,
Definition@"Groebner extension"DD

11.7 Timing Measurements

11.7.1 The First Experiment

Finally, the stage for  demonstrating some time measurements is  set  on both the Theorema side and the

Java side. We start with some computations in Theorema. Please note that, since we want to compute in a

computational session of Theorema, we have to set up the knowledge base accordingly.

Use@XBuilt|in@"Tuples"D,
Built|in@"Quantifiers"D, Built|in@"Connectives"D,
Built|in@"Numbers"D, Built|in@"Number Domains"D\D

ComputationalSession@D;
Use@XTheory@"TuplesLex"D,
Theory@"TuplesDeg"D, Theory@"Poly"D, Theory@"GB"D\D
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rdGb
GB2LexQ

@XXX1, X1, 0\\, X-1, X0, 1\\, X-5, X0, 0\\\,
XX1, X1, 1\\, X-1, X1, 0\\, X3, X0, 0\\\\D �� AbsoluteTiming

80.2031250, XXX1, X1, 0\\, X-1, X0, 1\\, X-5, X0, 0\\\,
XX1, X0, 2\\, X4, X0, 1\\, X-2, X0, 0\\\\<

EndComputationalSession@D
Now, we want to do the same computation by using the compiled Java program:

Java|UseDomains@8GB2LexQ, GB3LexQ, GB3DegQ<D
Java|ComputeB rdGb

GB2LexQ
@XXX1, X1, 0\\, X-1, X0, 1\\, X-5, X0, 0\\\,

XX1, X1, 1\\, X-1, X1, 0\\, X3, X0, 0\\\\DF �� AbsoluteTiming

80.0156250, XXX1, X1, 0\\, X-1, X0, 1\\, X-5, X0, 0\\\,
XX1, X0, 2\\, X4, X0, 1\\, X-2, X0, 0\\\\<

So, the speed-up factor in this example is about 13.

11.7.2 The Second Experiment

In  this  experiment  we  want  to  compute  the  reduced  Gröbner  Basis  of  a  set  of  polynomials  in  three

variables over the rational numbers:

ComputationalSession@D
rdGbBC12

GB3LexQ
B[[X-2, X2, 0, 1\\, [1

3
, X0, 1, 1\_, [5

7
, X0, 1, 0\__,

[[1
2
, X1, 1, 1\_, X-3, X1, 0, 1\\, X1, X0, 0, 0\\__F �� AbsoluteTiming

EndComputationalSession@D
:0.5937500,

[[X1, X0, 3, 2\\, [15
7
, X0, 3, 1\_, X-12, X0, 2, 2\\, [ -180

7
, X0, 2, 1\_,

X36, X0, 1, 2\\, [540
7

, X0, 1, 1\_, X-24, X0, 0, 0\\_, [X1, X1, 0, 0\\,

[ 1

12
, X0, 2, 1\_, [ 5

28
, X0, 2, 0\_, [ -1

2
, X0, 1, 1\_, [ -15

14
, X0, 1, 0\___>
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Java|ComputeBrdGbBC12
GB3LexQ

B[[X-2, X2, 0, 1\\, [1
3
, X0, 1, 1\_, [5

7
, X0, 1, 0\__,

[[1
2
, X1, 1, 1\_, X-3, X1, 0, 1\\, X1, X0, 0, 0\\__FF �� AbsoluteTiming

:0.0156250,
[[X1, X0, 3, 2\\, [15

7
, X0, 3, 1\_, X-12, X0, 2, 2\\, [ -180

7
, X0, 2, 1\_,

X36, X0, 1, 2\\, [540
7

, X0, 1, 1\_, X-24, X0, 0, 0\\_, [X1, X1, 0, 0\\,

[ 1

12
, X0, 2, 1\_, [ 5

28
, X0, 2, 0\_, [ -1

2
, X0, 1, 1\_, [ -15

14
, X0, 1, 0\___>

In this experiment the speed-up factor is about 38.

11.7.3 The Third Experiment

ComputationalSession@D
rdGbBC12

GB3DegQ
B[[X-2, X2, 0, 1\\, [1

3
, X0, 1, 1\_, [5

7
, X0, 1, 0\__,

[[1
2
, X1, 1, 1\_, X-3, X1, 0, 1\\, X1, X0, 0, 0\\_, [[ -1

5
, X3, 1, 0\_,

[2
3
, X1, 2, 0\_, X1, X0, 1, 1\\, X-3, X0, 0, 0\\__F �� AbsoluteTiming

EndComputationalSession@D
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:42.3125000,

[[X1, X0, 0, 3\\, [257
525

, X2, 0, 0\_, [ -2243

4410
, X1, 1, 0\_, [53642

1575
, X1, 0, 1\_,

[ -6227

3087
, X0, 2, 0\_, [ -361

150
, X0, 1, 1\_, [4171

630
, X0, 0, 2\_,

[ -127088

11025
, X1, 0, 0\_, [331627

30870
, X0, 1, 0\_, [ -1037

210
, X0, 0, 1\_,

[ -41942

4725
, X0, 0, 0\__, [X1, X0, 3, 0\\, [12348

11975
, X2, 0, 0\_,

[55202
11975

, X1, 1, 0\_, [642096
11975

, X1, 0, 1\_, [ -5979

479
, X0, 2, 0\_,

[37044
2395

, X0, 0, 2\_, [ -17388

479
, X1, 0, 0\_, [84918

2395
, X0, 1, 0\_,

[ -26754

2395
, X0, 0, 1\_, [ -146412

11975
, X0, 0, 0\__,

[X1, X1, 0, 2\\, [ -1

10
, X2, 0, 0\_, [ 3

28
, X1, 1, 0\_, [ -549

70
, X1, 0, 1\_,

[2395
4116

, X0, 2, 0\_, [19
30

, X0, 1, 1\_, [ -3

2
, X0, 0, 2\_, [2444

735
, X1, 0, 0\_,

[ -3323

1029
, X0, 1, 0\_, [3

4
, X0, 0, 1\_, [19

10
, X0, 0, 0\__,

[X1, X3, 0, 0\\, [3
2
, X2, 0, 0\_, [ -415

84
, X1, 1, 0\_,

X78, X1, 0, 1\\, [ -225

28
, X0, 1, 1\_, [45

2
, X0, 0, 2\_,

X-5, X0, 1, 0\\, [895
28

, X0, 0, 1\_, [ -57

2
, X0, 0, 0\__,

[X1, X2, 1, 0\\, X-30, X1, 0, 1\\, [2395
294

, X0, 2, 0\_, [ -15

2
, X0, 1, 1\_,

[450
7

, X1, 0, 0\_, [ -3375

49
, X0, 1, 0\_, X45, X0, 0, 1\\_,

[X1, X0, 1, 2\\, [2
5
, X2, 0, 0\_, [ -3

7
, X1, 1, 0\_, [114

5
, X1, 0, 1\_,

[ -4

3
, X0, 1, 0\_, X-3, X0, 0, 1\\, [ -38

5
, X0, 0, 0\__,

[X1, X1, 2, 0\\, [28
5
, X2, 0, 0\_, X-6, X1, 1, 0\\, [ -14

15
, X0, 1, 0\__,

[X1, X0, 2, 1\\, [15
7
, X0, 2, 0\_, X-6, X0, 1, 1\\, X12, X1, 0, 0\\,

[ -90

7
, X0, 1, 0\__, [X1, X2, 0, 1\\, [ -1

6
, X0, 1, 1\_, [ -5

14
, X0, 1, 0\__,

XX1, X1, 1, 1\\, X-6, X1, 0, 1\\, X2, X0, 0, 0\\\_>
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Java|ComputeBrdGbBC12
GB3DegQ

B[[X-2, X2, 0, 1\\, [1
3
, X0, 1, 1\_, [5

7
, X0, 1, 0\__,

[[1
2
, X1, 1, 1\_, X-3, X1, 0, 1\\, X1, X0, 0, 0\\_, [[ -1

5
, X3, 1, 0\_,

[2
3
, X1, 2, 0\_, X1, X0, 1, 1\\, X-3, X0, 0, 0\\__FF �� AbsoluteTiming
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:0.4843750,

[[X1, X0, 0, 3\\, [257
525

, X2, 0, 0\_, [ -2243

4410
, X1, 1, 0\_, [53642

1575
, X1, 0, 1\_,

[ -6227

3087
, X0, 2, 0\_, [ -361

150
, X0, 1, 1\_, [4171

630
, X0, 0, 2\_,

[ -127088

11025
, X1, 0, 0\_, [331627

30870
, X0, 1, 0\_, [ -1037

210
, X0, 0, 1\_,

[ -41942

4725
, X0, 0, 0\__, [X1, X0, 3, 0\\, [12348

11975
, X2, 0, 0\_,

[55202
11975

, X1, 1, 0\_, [642096
11975

, X1, 0, 1\_, [ -5979

479
, X0, 2, 0\_,

[37044
2395

, X0, 0, 2\_, [ -17388

479
, X1, 0, 0\_, [84918

2395
, X0, 1, 0\_,

[ -26754

2395
, X0, 0, 1\_, [ -146412

11975
, X0, 0, 0\__,

[X1, X1, 0, 2\\, [ -1

10
, X2, 0, 0\_, [ 3

28
, X1, 1, 0\_, [ -549

70
, X1, 0, 1\_,

[2395
4116

, X0, 2, 0\_, [19
30

, X0, 1, 1\_, [ -3

2
, X0, 0, 2\_, [2444

735
, X1, 0, 0\_,

[ -3323

1029
, X0, 1, 0\_, [3

4
, X0, 0, 1\_, [19

10
, X0, 0, 0\__,

[X1, X3, 0, 0\\, [3
2
, X2, 0, 0\_, [ -415

84
, X1, 1, 0\_,

X78, X1, 0, 1\\, [ -225

28
, X0, 1, 1\_, [45

2
, X0, 0, 2\_,

X-5, X0, 1, 0\\, [895
28

, X0, 0, 1\_, [ -57

2
, X0, 0, 0\__,

[X1, X2, 1, 0\\, X-30, X1, 0, 1\\, [2395
294

, X0, 2, 0\_, [ -15

2
, X0, 1, 1\_,

[450
7

, X1, 0, 0\_, [ -3375

49
, X0, 1, 0\_, X45, X0, 0, 1\\_,

[X1, X0, 1, 2\\, [2
5
, X2, 0, 0\_, [ -3

7
, X1, 1, 0\_, [114

5
, X1, 0, 1\_,

[ -4

3
, X0, 1, 0\_, X-3, X0, 0, 1\\, [ -38

5
, X0, 0, 0\__,

[X1, X1, 2, 0\\, [28
5
, X2, 0, 0\_, X-6, X1, 1, 0\\, [ -14

15
, X0, 1, 0\__,

[X1, X0, 2, 1\\, [15
7
, X0, 2, 0\_, X-6, X0, 1, 1\\, X12, X1, 0, 0\\,

[ -90

7
, X0, 1, 0\__, [X1, X2, 0, 1\\, [ -1

6
, X0, 1, 1\_, [ -5

14
, X0, 1, 0\__,

XX1, X1, 1, 1\\, X-6, X1, 0, 1\\, X2, X0, 0, 0\\\_>

In this final experiment the speed-up factor is about 87. 
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In this final experiment the speed-up factor is about 87. 

11.7.4 Summary of Experiments

Table 11.1 summarizes some timing measurements of the algorithm rdGbBC12.

Task Theorema Compiled Theorema Speed - up Factor

rdGbBC12@Lex, 2 Variables, 3 PolynomialsD 0.75 s 0.02 s 38

rdGbBC12@Lex, 2 Variables, 4 PolynomialsD 1.19 s 0.02 s 60

rdGbBC12@Lex, 3 Variables, 3 PolynomialsD 10.67 s 0.17 s 63

rdGbBC12@Lex, 3 Variables, 4 PolynomialsD 33.44 s 0.48 s 70

rdGbBC12@Lex, 4 Variables, 3 PolynomialsD 27.25 s 0.39 s 70

rdGbBC12@Deg, 2 Variables, 3 PolynomialsD 1.16 s 0.02 s 60

rdGbBC12@Deg, 2 Variables, 4 PolynomialsD 1.67 s 0.03 s 56

rdGbBC12@Deg, 3 Variables, 3 PolynomialsD 13.94 s 0.17 s 82

rdGbBC12@Deg, 3 Variables, 4 PolynomialsD 20.02 s 0.22 s 91

rdGbBC12@Deg, 4 Variables, 3 PolynomialsD 53.11 s 0.70 s 76

Table 11.1: Time Measurements of rdGbBC12
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12 Interpolation of Univariate Polynomials

This chapter is about the interpolation of univariate polynomials by Neville's algorithm and is based on

[Wind06].  We  will  define  the  functor  UnivPoly  and  the  algorithms  NevilleP  and  Eval–

NevilleP. After shortly explaining the corresponding Theorema code, we will compare  the computing

times of original Theorema and Java code created by the Theorema-Java Compiler.

12.1 The Functor UnivPoly

The functor UnivPoly  takes a field K  and returns the univariate polynomial ring over K  which repre-

sents polynomials as the tuples of their coefficients.

DefinitionB"Univariate Polynomial Functor", any@KD,
UnivPoly@KD = FunctorBP, any@p, q, n, aD,

s = X\
Î
P

@pD � Kp = [0
K
_O ë is|tuple@pD í  p¤ > 0 í "

i=1,¼, p¤ Î
K

@piD í p p¤ ¹ 0
K

0
P

= [0
K
_

1
P

= Z1
K
^

index
P

@pD =

1 Ü "
j=1,¼, p¤ Kpj = 0

K
O

æ
i=1,¼, p¤ Kpi ¹ 0

K
O í "

j=i+1,¼, p¤ Kpj = 0
K
O Ü otherwise

deg
P

@pD =  p¤ - 1

coef
P

@p, nD =
pn+1 Ü n ³ 0 í n £ deg

P
@pD

0
K

Ü otherwise

canonic
P

@pD = [pi È
i=1,¼,index

P
@pD_

const
P

@aD = Xa\
p +

P
q = canonic

P
B[coef

P
@p, iD +

K
coef

P
@q, iD È

i=0,¼,MaxBdeg
P

@pD,deg
P

@qDF_F
p -

P
q = canonic

P
B[coef

P
@p, iD -

K
coef

P
@q, iD È

i=0,¼,MaxBdeg
P

@pD,deg
P

@qDF_F
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p*
P
q = canonic

P
B[ ÚK

j=0,¼,i

coef
P

@p, jD *
K
coef

P
@q, i - jD È

i=0,¼,deg
P

@pD+deg
P

@qD_F
a×

P
p = canonic

P
B[a*

K
coef

P
@p, iD È

i=0,¼,deg
P

@pD_F
p�

P
a = [coef

P
@p, iD �

K
a È
i=0,¼,deg

P

@pD_
eval

P
@p, aD = ÚK

i=0,¼,deg
P

@pDcoefP
@p, iD *

K
a K̂ i

FF

12.2 The Algorithms NevilleP and Eval–NevilleP

The algorithm NevilleP takes a list of data points (in the form of the tuples x and a of the same length

n),  a  field  K,  and  the  univariate  polynomial  ring  over  K  (returned  by  UnivPoly).  It  computes  the

Neville polynomial which is of degree n-1 and goes through the given data points.

AlgorithmB"Neville", any@x, a, K, PD,
NevilleP@x, a, K, PD :=

const
P

@a1D Ü  x¤ = 1

whereBn =  x¤,
JZ-

K
x1, 1^ *

P
NevilleP@x1!î, a1!î, K, PD -

P

Z-
K
xn, 1^ *

P
NevilleP@xn!î, an!î, K, PDN �

P
Jxn -

K
x1NF

Ü otherwise F

The algorithm Eval–NevilleP takes five parameters: the first four have the same meaning as those of

NevilleP,  the  fifth  one  is  an  element  v  of  K.  Eval–NevilleP  returns  the  value  of  the  Neville

polynomial at the given point v.

AlgorithmB"Neville Evaluation", any@x, a, K, P, vD,
Eval|NevilleP@x, a, K, P, vD :=

a1 Ü  x¤ = 1

whereBn =  x¤,
JJv -

K
x1N *

K
Eval|NevilleP@x1!î, a1!î, K, P, vD -

K

Jv -
K
xnN *

K
Eval|NevilleP@xn!î, an!î, K, P, vDN �

K
Jxn -

K
x1NF

Ü otherwise

F
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TheoryB"Neville",
Algorithm@"Neville"D

Algorithm@"Neville Evaluation"DF

12.3 Compilation to Java

To create the domain of univariate polynomials over Q on the Java side, we execute

Java|DeclareDomain@UnivPolyQ = UnivPoly@QD,
Definition@"Univariate Polynomial Functor"DD

Additionally, we compile the theory "Neville":

Java|Theory2Java@Theory@"Neville"DD

12.4 Timing Measurements

12.4.1 The First Experiment

We are now ready to perform some time measurements in both Theorema and Java. 

Use@XBuilt|in@"Tuples"D, Built|in@"Quantifiers"D, Built|in@"Numbers"D,
Built|in@"Number Domains"D, Built|in@"Connectives"D\D

ComputationalSession@D
Use@XDefinition@"Univariate Polynomial Functor"D, Theory@"Neville"D\D
NevilleP@X1, 2, 3, 4, 5, 6, 7, 8, 9, 10\,X3, 1, 5, 2, 6, 10, -1, -9, 15, 20\, Q, UnivPoly@QDD �� AbsoluteTiming

:7.5937500, [-8,
45533

360
,

-530407

2016
,
10340243

45360
,

-596971

5760
,
469523

17280
,

-2443

576
,
3353

8640
,

-773

40320
,

143

362880
_>

EndComputationalSession@D
So, the computation of this Neville polynomial for 10 data points took Theorema about 7.59 seconds. Let

us use now the compiled algorithm:

Java|UseTheories@8"Neville"<D
Java|UseDomains@8UnivPolyQ<D
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Java|Compute@NevilleP@X1, 2, 3, 4, 5, 6, 7, 8, 9, 10\,X3, 1, 5, 2, 6, 10, -1, -9, 15, 20\, Q, UnivPolyQDD �� AbsoluteTiming

:0.3125000, [-8,
45533

360
,

-530407

2016
,
10340243

45360
,

-596971

5760
,
469523

17280
,

-2443

576
,
3353

8640
,

-773

40320
,

143

362880
_>

The compiled Java code just needs about 0.31 seconds to compute this polynomial and, hence, it is about

25 times faster than the above computation performed in Theorema's computational session.

12.4.2 The Second Experiment

As a second experiment, we want to compute a Neville polynomial for 12 data points:

ComputationalSession@D
NevillePBX1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31\,

[1
2
, -3, 15,

7

9
, 61, 0, -7,

2

13
, 5, -2,

-1

15
,
20

29
_,

Q, UnivPoly@QDF �� AbsoluteTiming

EndComputationalSession@D
:31.6875000, [500106151202507

872862842880
,

-17084512287418862845921

12922551087641395200
,

272751935337391768663

239306501622988800
,

-1286857066635570953603

2584510217528279040
,

135129780087013929611

1076879257303449600
,

-1942771048943230861

99404239135703040
,

300875487730797797

153839893900492800
,

-825438116711096071

6461275543820697600
,

3881559120762221

717919504868966400
,

-1843141983702389

12922551087641395200
,

83324894573

39159245720125440
,

-16081636153

1174777371603763200
_>
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Java|ComputeBNevillePBX1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31\, [1
2
, -3,

15,
7

9
, 61, 0, -7,

2

13
, 5, -2,

-1

15
,
20

29
_, Q, UnivPolyQFF �� AbsoluteTiming

:1.2968750, [500106151202507
872862842880

,
-17084512287418862845921

12922551087641395200
,

272751935337391768663

239306501622988800
,

-1286857066635570953603

2584510217528279040
,

135129780087013929611

1076879257303449600
,

-1942771048943230861

99404239135703040
,

300875487730797797

153839893900492800
,

-825438116711096071

6461275543820697600
,

3881559120762221

717919504868966400
,

-1843141983702389

12922551087641395200
,

83324894573

39159245720125440
,

-16081636153

1174777371603763200
_>

In this example the speed-up factor is again  about 25.

12.4.3 The Third Experiment

In this example, we use the algorithm Eval–NevilleP:

ComputationalSession@D
Eval|NevillePBX1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31\,

[1
2
, -3, 15,

7

9
, 61, 0, -7,

2

13
, 5, -2,

-1

15
,
20

29
_,

Q, UnivPoly@QD, 181

13
F �� AbsoluteTiming

EndComputationalSession@D
:2.4531250, 12319766785038848315

1240483244261378364
>

Java|ComputeBEval|NevillePBX1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31\,
[1
2
, -3, 15,

7

9
, 61, 0, -7,

2

13
, 5, -2,

-1

15
,
20

29
_,

Q, UnivPolyQ,
181

13
FF �� AbsoluteTiming

:0.3437500, 12319766785038848315

1240483244261378364
>

The speed-up factor here is about 7.
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12.4.4 The Fourth Experiment

Again, we use the algorithm Eval–NevilleP for a computation:

ComputationalSession@D
Eval|NevillePBX1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 39, 41\,

[1
2
, -3, 15,

7

9
, 61, 0, -7,

2

13
, 5, -2,

-1

15
,
20

29
,

5

19
,

-7

91
,
27

99
_,

Q, UnivPoly@QD, 181

13
F �� AbsoluteTiming

EndComputationalSession@D
:19.4531250, 13767650491180189006940

97430965333210375499061
>

Java|ComputeB
Eval|NevillePBX1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 39, 41\,

[1
2
, -3, 15,

7

9
, 61, 0, -7,

2

13
, 5, -2,

-1

15
,
20

29
,

5

19
,

-7

91
,
27

99
_,

Q, UnivPolyQ,
181

13
FF �� AbsoluteTiming

:2.8593750, 13767650491180189006940

97430965333210375499061
>

Also in this example the speed-up factor is about 7.

12.4.5 Summary of Experiments

Table 12.1 summarizes some timing measurements of the algorithm NevilleP.

Task Theorema Compiled Theorema Speed - up Factor

NevilleP@6 data pointsD 0.44 s 0.02 s 22

NevilleP@8 data pointsD 1.84 s 0.09 s 20

NevilleP@10 data pointsD 7.63 s 0.33 s 23

NevilleP@12 data pointsD 31.02 s 1.3 s 23

NevilleP@14 data pointsD 124.98 s 5.27 s 24

Table 12.1: Time Measurements of NevilleP
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Conclusion and Future Work

In  this  thesis  we  showed  how  to  drastically  speed-up  the  computation  times  of  original  Theorema

programs by compiling them into executable Java byte code. The generated Java programs are not faster

by a constant factor, but rather depends the achievable acceleration on a size-parameter.

However, the execution times of the compiled Theorema programs are still far away from handcoded

Java or  C programs. Hence, it  is  the major challenge for  the future development of the Theorema-Java

Compiler to come up with additional ideas and techniques to further increase the speed-up.

We  have chosen Java  as  the  target  language of  the  compiler  mainly because  of  the  well  supported

J/Link and, secondly, because it is natural to believe that a object-oriented language should support the

generic programming philosophy of Theorema, in particular the functor mechanism. However, it  would

still  be  reasonable to  try out  plain C as  the target  language because of  its  efficiency, since, in fact,  the

method  which  we  use  for  compiling  Theorema  functors  (substitution  of  concrete  function  calls  for

function variables in compiled code) does not depend on the availability of object oriented features.
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