
JOHANNES KEPLER

UNIVERSITÄT LINZ
Netzwerk für Forschung, Lehre und Praxis

Compilation of Theorema Programs

DISSERTATION

zur Erlangung des akademischen Grades

DOKTOR DER TECHNISCHEN WISSENSCHAFTEN

Angefertigt am Institut für Symbolisches Rechnen

Betreuung:

Erster Begutachter: o.Univ.-Prof. Dr. Dr.h.c.mult. Bruno Buchberger

Zweiter Begutachter: a.Univ.-Prof. Dr. Josef Küng

Eingereicht von:

Dipl.-Ing. Alexander Zapletal

Linz, Mai 2008

Johannes Kepler Universität
A– 4040 Linz · Altenbergerstraße 69 · Internet: http://www.uni– linz.ac.at · DVR 0093696

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne fremde Hilfe

verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wörtlich oder

sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Linz, Mai 2008

Alexander Zapletal

ii

Abstract

In this thesis we present a compiler which is able to translate Theorema programs into executable Java

code, which can then be used for extensive and fast calculations called from within Theorema.

Generally, it can be observed that higher elegance in programming languages and software systems

must be paid for by dramatically increasing computing times, see for example Prolog computations and

original Theorema. One of the basic strategical goals of the Theorema system is to offer predicate logic

as a uniform frame for the three main activities of mathematics: proving, solving, and computing. It is

one of the strong features of Theorema that it combines automated theorem proving and computation in

one logical and software frame. In fact, the same Theorema definitions that are used for stating and

proving theorems can also be applied for computing.

The actual motivation for this thesis was the slowness of computations in the current version of

Theorema, which is due to the usage of special logical inference rules (directed equational logic) as an

interpreter for the Theorema algorithms. Therefore, it is of utmost importance to find a way to drastically

speed-up the execution of Theorema algorithms without losing the elegance of writing the algorithms in

the same predicate logic version (namely that of Theorema) in which also general mathematical state-

ments, in particular correctness theorems for algorithms, are expressed. The main approach for achieving

this goal is compilation of Theorema algorithms into a machine-oriented language, in our case Java. It

turns out that this is possible for Theorema algorithms, at least for a well defined and rich class of

practically interesting algorithms that includes the full power of induction, sequence variables, and even

functors.

In this thesis we will show how this goal of compilation of Theorema programs can be achieved in a

satisfactory way that brings the execution times of compiled Theorema programs drastically below the

execution times of Mathematica algorithms and not more than a factor of 100 above the execution times

of hand coded Java algorithms.

Keywords: Compilation, Predicate Logic, Theorema

iii

Zusammenfassung

In dieser Dissertation wird ein Compiler vorgestellt, der Theorema-Programme in ausführbaren Java

Code übersetzen kann. Dieser Code kann dann für schnelle Berechnungen von Theorema aus exekutiert

werden.

Höhere Eleganz bei Programmiersprachen und Softwaresystemen muss in der Praxis meist mit

dramatisch schlechteren Laufzeiten teuer bezahlt werden, siehe Prolog und (die derzeitige Version von)

Theorema. Eines der zentralen und grundlegenden Ziele von Theorema ist der Einsatz von Prädikaten-

logik als ein einheitliches System für die drei Hauptaktivitäten in der Mathematik: Beweisen, Lösen und

Berechnen. Eine der herausragenden Besonderheiten von Theorema ist die Kombination von automa-

tischem Beweisen und Berechnungen in einem logischen und softwaretechnischen Rahmen. Tatsächlich

können die Theorema-Definitionen, die zum Formulieren und Beweisen von Theoremen verwendet

werden, auch für Berechnungen angewendet werden.

Die eigentliche Motivation für diese Arbeit war die Langsamkeit von Berechnungen in der derzeiti-

gen Version von Theorema, die durch die Verwendung von speziellen logischen Schlussregeln

(gerichtete Gleichheitslogik) als Interpreter für Theorema-Algorithmen bedingt ist. Daher ist es von

größter Wichtigkeit einen Weg zu finden, die Ausführung von Theorema-Algorithmen drastisch zu

beschleunigen, ohne jedoch die Eleganz zu verlieren, die Algorithmen in der selben Prädikatenlogikver-

sion (nämlich jener von Theorema) zu schreiben, in der auch generelle mathematische Aussagen, ins-

besondere Korrektheitsbeweise von Algorithmen, formuliert sind. Der zentrale Ansatz zur Erreichung

dieses Ziels ist die Kompilierung von Theorema-Algorithmen in eine maschinenorientierte Sprache, in

unserem Fall Java. Es stellt sich heraus, dass das zumindest für eine wohldefinierte and reichhaltige

Klasse von in der Praxis interessanten Algorithmen möglich ist, die vor allem auch Induktion, Sequenz-

variablen und sogar Funktoren umfassen können.

In dieser Arbeit zeigen wir, wie das Ziel der Kompilierung von Theorema-Programmen auf eine

zufriedenstellende Weise erreicht werden kann, sodass die Ausführungszeiten von kompilierten Theo-

rema-Programmen deutlich unter jenen von Mathematica und nur um einen Faktor 100 über jenen von

direkt in Java geschriebenen Algorithmen liegen.

Schlüsselwörter: Kompilation, Prädikatenlogik, Theorema

iv

Acknowledgement

First of all, I want to thank Professor Bruno Buchberger, my advisor, for giving me the opportunity to

study at RICAM and at RISC, in such a wonderful place like Hagenberg. Moreover, I want to thank him

for his encouraging and always stimulating support in all of our Theorema seminars and special meet-

ings. Throughout my whole Ph.D. time and the development of this work he was an inspiring guide who

always had the right idea at the right moment. I also want to express my gratefulness to him, Professor

Heinz W. Engl, and Professor Franz Winkler for making my financial support during my studies in Linz

and Hagenberg possible.

Further, I want to thank all my colleagues from RICAM and RISC, especially Wolfgang Windsteiger

and Laura Kovacs, for all their help and support.

Finally, I want to cordially thank my family for all their support and patience throughout my studies.

v

Contents

Abstract iii...

Zusammenfassung iv...

Acknowledgement v..

Contents vi...

Introduction 1...

 Combination of Elegance and Efficiency 1..

 Statement of Originality 2..

 Structure of the Thesis 3..

 On the Document 4..

Part 1 - The Theorema-Java Compiler 5..

 1 Computations in the Current Theorema System 5...

 1.1 The Theorema System 5..

 1.2 Computing in Theorema 6...

 2 The Problem 9...

 2.1 Why Did We Choose Java? 10..

 2.2 A Short Summary of Features 10...

 2.3 System Requirements 11..

 2.4 A First Example 11..

 3 The Three Steps of Translation 13..

 3.1 Eliminating Pattern Matching 13...

 3.2 Creating Java Source Code 16...

 3.2.1 The TupleOf Quantifier 18...

 3.2.2 The SetOf Quantifier 19..

 3.2.3 The Ú Quantifier 19..

 3.2.4 The SuchThat Quantifier 20..

 3.2.5 The " Quantifier 22..

 3.2.6 The $ Quantifier 23..

 3.3 Creating Java Byte Code 24...

 4 Translation of Abstract Data Types 25...

 4.1 An Example: Plus 25...

 4.2 General Translation 31...

 4.3 Time Measurements 33..

 5 Translation of Sequence Variables 36..

Contents vi

 5 Translation of Sequence Variables 36..

 5.1 An Example: InsertOrdered 36...

 5.2 General Translation 38...

 5.2.1 Modifications of the Intermediate Language 38...

 5.2.2 Modifications of the Compiler 39...

 5.2.3 Modifications of the Java Framework 40...

 5.3 Time Measurements 41..

 6 Translation of Higher Order Functions 45..

 6.1 An Example: DoubleMap 45...

 6.2 General Translation 47...

 6.3 Time Measurements 49..

 7 Translation of Functors 52..

 7.1 An Example: CartesianProduct 52..

 7.2 General Translation 56...

 7.3 Time Measurements 57..

 8 Calling Compiled Algorithms 58..

 9 Compiler Settings 59...

 9.1 Java-SetDefaultDomain 59..

 9.2 Java-SetCompilerParameter 60...

 10 The Framework of the Theorema-Java Compiler 61..

 10.1 The Package Structure 61..

 10.2 The Package BuiltIn 61..

 10.2.1 The Class Data 61...

 10.2.2 The Classes BooleanData, True, and False 62...

 10.2.3 The Classes BI_Number, BI_Integer, and BI_Rational 63...................................

 10.2.4 The Classes Container, Tuple, and Set 64..

 10.2.5 The Classes BI_Tuple and BI_Set 66..

 10.2.6 The Class Sequence 73...

 10.2.7 The Class Factory 75..

 10.2.8 The Class Constants 76...

 10.3 The Package BasicDomains 76..

 10.3.1 The Interface Domain 76...

 10.3.2 The Classes Integers, Rationals, and IntegersMod5 76.....................................

 10.3.3 The Class DomainData 84...

 10.4 The JavaComputer Class 84...

Contents vii

 10.4 The JavaComputer Class 84...

Part 2 - Case Studies 87...

 11 Gröbner Bases 87..

 11.1 The Functor ReductionField 88..

 11.2 The Functor TuplesLex 88..

 11.3 The Functor TuplesDeg 89..

 11.4 The Functor Poly 91..

 11.5 The Functor Groebner–extension 94...

 11.6 Compilation to Java 97..

 11.7 Timing Measurements 98...

 11.7.1 The First Experiment 98...

 11.7.2 The Second Experiment 99...

 11.7.3 The Third Experiment 100..

 11.7.4 Summary of Experiments 104...

 12 Interpolation of Univariate Polynomials 105..

 12.1 The Functor UnivPoly 105...

 12.2 The Algorithms NevilleP and Eval–NevilleP 106..

 12.3 Compilation to Java 107..

 12.4 Timing Measurements 107...

 12.4.1 The First Experiment 107...

 12.4.2 The Second Experiment 108...

 12.4.3 The Third Experiment 109..

 12.4.4 The Fourth Experiment 110..

 12.4.5 Summary of Experiments 110...

Conclusion and Future Work 111..

References 112...

Contents viii

Introduction

In this thesis we present a compiler for the Theorema system. It is able to translate Theorema programs

into executable Java byte code, which can then be used for extensive and fast calculations called from

within Theorema. It is one of the strong features of the Theorema system that it combines automated

theorem proving and computation in one logical and software frame. In fact, the same Theorema defini-

tions that are used for stating and proving theorems can also be applied for computing.

The actual motivation for this thesis was the slowness of computations in the current version of

Theorema, which is due to the usage of special logical inference rules (directed equational logic) as an

interpreter for the Theorema algorithms. Especially when working with functors and combining them to

nested "towers", computations become so slow that they are only interesting for pedagogical purposes

but not for actual scientific applications of Theorema. Therefore, we wanted to come up with an

approach to drastically speed-up computation times in Theorema, and the compilation to a fast and

modern language like Java is the natural way to achieve this goal.

Two aspects were the driving principles during the design and development of the Theorema-Java

Compiler presented in this thesis:

è All programs formulated in the current Theorema language should be translatable by the

compiler. This includes predicate logic quantifiers with bounded range (e.g., " and $), special

Theorema quantifiers (e.g., the TupleOf quantifier and the SumOf quantifier), sequence vari-

ables, and, particularly, functors.

è Computing with the compiled Theorema programs should be completely hidden from the user,

i.e., it should not be necessary for the user to get in contact with the Java code. Nevertheless, the

user is, of course, able to access the well readable and well structured Java source code.

Combination of Elegance and Efficiency

Generally, it can be observed that higher elegance in programming languages and software systems must

be paid for by dramatically increasing computing times, see for example Prolog computations and

original Theorema. One of the basic strategical goals of the Theorema system is to offer predicate logic

as a uniform frame for the three main activities of mathematics: proving, solving, and computing, see

[Buch97], [Buch99c], [Buch00], [Buch04]. In particular, computing, in this view, is just a special case of

proving, namely proving by conditional rewriting of ground terms. Thus, exploration sequences of the

following kind should be possible in Theorema:

è Specify a problem, e.g., the computation of Gröbner Bases,

è Propose an algorithm for the solution of the problem, e.g., Buchberger's algorithm,

è Prove the correctness of the algorithm,

è Compute by applying the correct algorithm to concrete input.

This exploration sequence is possible in Theorema since its design and implementation in 1996

([Buch96b], [Buch96c], [Buch96d], [Buch96e], [Buch97], [Tma97], [Tma98], [Tma00], [Tma06],

[WiBu06]). Both the Theorema reasoners and the Theorema "computers" are written in the same meta

language, namely Mathematica. Not surprisingly, considering computing as special proving leads to

intolerably slow execution of algorithms. In fact, computations in Theorema can not be faster than

computations in the Mathematica language, which by itself is slow, see [Buch91]. In practice, it is even

slower by some constant, but not dramatic, factor. Thus, the current Theorema interpreter for Theorema

algorithms has only pedagogical value. But sometimes even the pedagogical goals can not be achieved

because running times are too long even for very small examples, and so, for example, the study of

computing time behavior of various version of an algorithm can not be explored in the classroom context.

Introduction 1

This exploration sequence is possible in Theorema since its design and implementation in 1996

([Buch96b], [Buch96c], [Buch96d], [Buch96e], [Buch97], [Tma97], [Tma98], [Tma00], [Tma06],

[WiBu06]). Both the Theorema reasoners and the Theorema "computers" are written in the same meta

language, namely Mathematica. Not surprisingly, considering computing as special proving leads to

intolerably slow execution of algorithms. In fact, computations in Theorema can not be faster than

computations in the Mathematica language, which by itself is slow, see [Buch91]. In practice, it is even

slower by some constant, but not dramatic, factor. Thus, the current Theorema interpreter for Theorema

algorithms has only pedagogical value. But sometimes even the pedagogical goals can not be achieved

because running times are too long even for very small examples, and so, for example, the study of

computing time behavior of various version of an algorithm can not be explored in the classroom context.

Therefore, it is of utmost importance to find a way to drastically speed-up the execution of Theorema

algorithms without losing the elegance of writing the algorithm in the same Theorema predicate logic

version in which also general mathematical statements, in particular correctness theorems for algorithms,

are expressed.

The main approach for achieving this goal is the compilation of Theorema algorithms into a machine-

oriented language, like C, C++, or Java (see Section 2.1). It turns out that this is possible for Theorema

algorithms, at least for a well defined and rich class of practically interesting algorithms that includes the

full power of induction, sequence variables, and even functors. Note that, in contrast, compilation is not

possible in full-fledged Mathematica because of its many ad hoc peculiarities.

In this thesis we will show how this goal of compilation of Theorema programs can be achieved in a

satisfactory way.

Statement of Originality

Theorema, developed at the Research Institute for Symbolic Computation (RISC, Johannes Kepler

University Linz, Austria) since 1994, is implemented on the basis of the commercially distributed

symbolic computation software system Mathematica and is based on a concept and on the ideas of Bruno

Buchberger (see [Buch96b], [Buch96c], [Buch96d], [Buch96e], [Buch97]). Since the start of the Theo-

rema project a lot of people, some of them left RISC, some are still active members in the Theorema

group, have contributed to the constant development and improvement of the system. In the following list

I will enumerate the most important members of the Theorema group as well as those who contributed

most to the development of the compiler presented in the course of this thesis.

è Bruno Buchberger is the inventor of the Theorema system and also implemented its first version

including the first prototypes of some provers. Especially, he introduced the concept of functors

in Theorema (see [Tma00]), which is the very concept to build-up mathematics bottom-up,

starting from simple domains (for example, rational numbers with simple operations like

addition, multiplication) and repeatedly applying suitable functors to arrive at arbitrary complex

domains. He is a very active member and the driving force of the Theorema group ever since the

start of the Theorema project.

è Bruno Buchberger, again. Since he is not only the creator of the Theorema system, as stated

above, but also the scientific supervisor of this thesis, it is, no doubt, appropriate mentioning

him twice. He lively contributed to the content in many seminars and personal meetings. Particu-

larly, the translation of functors (see Chapter 7) and of sequence variables (see Chapter 5) are

based on his ideas ([Buch07a]).

Introduction 2

è

Bruno Buchberger, again. Since he is not only the creator of the Theorema system, as stated

above, but also the scientific supervisor of this thesis, it is, no doubt, appropriate mentioning

him twice. He lively contributed to the content in many seminars and personal meetings. Particu-

larly, the translation of functors (see Chapter 7) and of sequence variables (see Chapter 5) are

based on his ideas ([Buch07a]).

è Tudor Jebelean, co-leader of the Theorema group, contributed to a module for the elimination of

pattern matching (see Section 3.1), which is needed in the translation of Theorema theories into

an intermediate code, which was designed by him as well ([Jebe07]).

è Martin Giese gave many very important advice and contributions in the starting phase of the

development of the compiler. Particularly, the compilation of abstract data types and the

associated class design (see Chapter 4) are mainly based on his ideas ([Gies07]).

è Wolfgang Windsteiger is the member of the Theorema group who has the best overview of the

current implementation of the entire Theorema system. Therefore, he is in charge of the mainte-

nance of the system and is also very active in the its further development. Moreover, he is a very

helpful person always taking time to explain the internals of Theorema to newcomers of the

group and helping to solve problems with it, however hard and involved they are. Without his

cordial and extensive help this thesis would have been hardly possible.

è Temur Kutsia, also a very active member of the Theorema group, contributed to the translation

of sequence variables by virtue of his rich experience in this area ([Kuts07]).

Structure of the Thesis

This thesis is divided into two main parts: a detailed description of the Theorema-Java Compiler and

case studies showing the compiler in action. In the first part, we will give an exact description of the

concrete implementation problems, which naturally arise from the inherent differences between the

Theorema language and the Java language. Then, we will state the reasons why we chose Java as the

target language of the compiler and also give a list of some special features of the compiler. The next

section provides a first example, namely merging two sorted lists, and concretely shows how a Theorema

theory can be compiled into Java code and how the thereby created code can be executed from within

Theorema. Chapters 4-7 deal with the details of the translation of Theorema programs into Java byte

code. Chapter 8 shows how to call compiled algorithms, and Chapter 9 documents commands the change

the compiler's behavior. The final Chapter 10 describes the whole Java-sided framework, which provides

several auxiliary Java classes.

Part 2 contains two case studies which demonstrate the capabilities and the usage of the Theorema-

Java Compiler. The first case study (see Chapter 11), which is based on the work of Bruno Buchberger in

[Buch03], is on computations of Gröbner Bases and shows the power of functors and their practical

application. The second case study (see Chapter 12) presents a Theorema implementation of an algo-

rithm for interpolating univariate polynomials and is based on [Wind06].

Introduction 3

On the Document

This thesis has been created using the Mathematica 6.0 front end, and it exists in two version: an elec-

tronic version and a printed version. While the latter one is the classical form of a Ph.D. thesis, the

electronic versions comes up with two main advantages:

è It offers the actual evaluation of input. This makes it possible to actually try out the presented

examples and also to modify them and make one's own experiments.

è It uses hyperlinks to quickly jump from one part of the thesis to another.

Please note that, one needs Mathematica or at least MathReader for accessing the electronic version.

Apart from floating text, two main formatting styles of cells can be found in this thesis: input cells

can be evaluated in the electronic version and look like this:

18 + 7

25

Cells which present Java code appear as a grey box, for instance:

int a = 18;

int b = 7;

System.out.printlnHa+bL;

Introduction 4

Part 1

The Theorema-Java Compiler

1 Computations in the Current Theorema System

In this part of the thesis we want to give a general overview of the Theorema system with a focus on its

computational capabilities. After a short description of the whole system, we will concentrate on the way

computing can be done in the current system. We will show the use of the two classical ways of computa-

tions in the Theorema system, namely the simple Compute command and the more advanced

ComputationalSession command. The core issue of this thesis is the presentation of a new way to

compute in Theorema by translating one's definitions into executable Java code and calling these com-

piled and optimized algorithms from within Theorema. For this, the framework of the Theorema-Java

Compiler provides several new commands (especially Java–Compute), which will be presented in

Chapter 8.

1.1 The Theorema System

The main philosophy of the Theorema system is to provide one logical and software system frame for the

entire mathematical exploration process, that includes the formulation of concepts, the mathematical

study of their properties, the formulation of mathematical problems, their solution by algorithms, the

application of algorithms to concrete data ("computation"), and the systematic documentation of the

exploration results in well structured knowledge bases, see [Buch96b], [Buch96c], [Buch96d],

[Buch96e], [Buch97], [Buch99c], [Buch00], [Buch04]. In particular, the user of a system like Theorema

need not switch between two systems when changing from proving to programming, or from searching in

knowledge bases to checking the correctness of mathematical statements.

 Theorema is built on top of Mathematica ([Mma]), a popular computer algebra system developed by

Stephen Wolfram. More specifically, for keeping Theorema logically self-contained, only the program-

ming language of Mathematica is used for the implementation of Theorema, no usage is made of Mathe-

matica's algorithm library (except if the Theorema user explicitly access algorithms from this library).

Theorema is currently an add-on package to Mathematica and can be loaded with the following

command:

Needs@"Theorema`"D
Mathematica, and hence Theorema as well, is currently supported by a wide range of computer systems:

Windows, Linux, and Mac OS. It also provides an interface to Java, the so-called J/Link, which is a key

feature needed to communicate between Theorema and Java and which is also one of the main motiva-

tions to choose Java as the target language of the compiler (see Section 2.1).

Mathematica, and hence Theorema as well, is currently supported by a wide range of computer systems:

Windows, Linux, and Mac OS. It also provides an interface to Java, the so-called J/Link, which is a key

feature needed to communicate between Theorema and Java and which is also one of the main motiva-

tions to choose Java as the target language of the compiler (see Section 2.1).

The typical mathematical work consists of three general activities: proving, computing, and solving.

Theorema supports all of them and thereby becomes, together with the extremely flexible and highly

configurable front-end of Mathematica, a convenient environment for the entire mathematical explora-

tion process. Although Theorema puts a special emphasis on proving, its computational capabilities are

also a very important aspect, because whenever you implemented an algorithm, you want, of course, to

try it out on some sample data. It is the main focus of this thesis to improve these computing capabilities

of the current Theorema system.

In order to support proving, computing, and solving, Theorema comes up with its own language,

which is, in fact, a version of higher order predicate logic without extensionality (see [Buch96a],

[Buch99b]) and, therefore, is built-up of the following objects: constants, variables, terms, formulae, and

quantifiers ([EFT92]). So, these ingredients form the core of Theorema's language, and they become of

central interest when a definition stated in this language is translated into Java code. We will neither give

a formal specification of the Theorema language, nor a more detailed description of it, but refer to a

more general and detailed characterization of the whole Theorema system and its philosophy in [Tma97],

[Buch98c], [Buch99a], [Tma99], [Tma00a], [Tma00b], and [Wind01].

1.2 Computing in Theorema

Theorema offers two different modes for computing: the standard session and the computational session.

The standard session, which is the default mode when the Theorema system is started, offers the user

command Compute for computing. A call to it has the following form:

Compute@Expression, using ® KnowledgeBaseD
For instance, to compute 18 + 7 in Theorema, you enter:

Compute@18 + 7, using ® XBuilt|in@"Numbers"D\D
25

In this example the knowledge base only contains the package Built–in["Numbers"], which is a

built-in package of Theorema and contains several rewrite rules for natural numbers. As a more involved

example, you may compute the set of all twin primes that are less than 100:

ComputeB:Xi, i + 2\ È
i=1,¼,100

IsPrime@iD ì IsPrime@i + 2D>,
using ® XBuilt|in@"Numbers"D,
Built|in@"Quantifiers"D, Built|in@"Connectives"D\F

8X3, 5\, X5, 7\, X11, 13\, X17, 19\, X29, 31\, X41, 43\, X59, 61\, X71, 73\<

This time, the knowledge base contains the packages Built–in["Numbers"], Built–

in["Quantifiers"] (containing rewrite rules for Theorema's quantifiers, like the SetOf quantifier8 È <), and Built–in["Connectives"] (containing rewrite rules for logical connectives, like ß).

1 Computations in the Current Theorema System 6

This time, the knowledge base contains the packages Built–in["Numbers"], Built–

in["Quantifiers"] (containing rewrite rules for Theorema's quantifiers, like the SetOf quantifier8 È <), and Built–in["Connectives"] (containing rewrite rules for logical connectives, like ß).

As a last example, which also shows the flexibility of Theorema and the beauty of its syntax, we

compute the set of perfect numbers that are less than or equal to 500. A perfect number is a positive

integer which is the sum of its proper positive divisors.

ComputeB:i È
i=1,¼,500

â
kÎ:j È

j=1,¼,i-1
jýi>

k = i >,

using ® XBuilt|in@"Numbers"D, Built|in@"Sets"D, Built|in@"Quantifiers"D\F
86, 28, 496<

In contrast to the standard session, computing in a computational session in Theorema works similar to

working in Mathematica itself. In this computational mode you can simply enter the expression whose

value you want to compute and do not need to put it into a Compute call. The Theorema user language

provides the command ComputationalSession[] to enter a computational session and the

command EndComputationalSession[] to leave it again. All calls between these two commands

are directly interpreted and computed by Theorema. Furthermore, the philosophy of the computational

session is that a knowledge base is built-up step by step by giving definitions or by importing environ-

ments that have been previously defined in the standard session ([Wind01]).

To execute the computations from above also in a computational session, we first have to tell Theo-

rema which knowledge base we want to use :

Use@XBuilt|in@"Numbers"D, Built|in@"Sets"D,
Built|in@"Quantifiers"D, Built|in@"Connectives"D\D

Then, we can enter the computational session:

ComputationalSession@D
Theorema automatically imports the knowledge that we declared with the above Use command; from

now on, all expressions that we enter are handled by Theorema using this knowledge:

:Xi, i + 2\ È
i=1,¼,100

IsPrime@iD ì IsPrime@i + 2D>
8X3, 5\, X5, 7\, X11, 13\, X17, 19\, X29, 31\, X41, 43\, X59, 61\, X71, 73\<

1 Computations in the Current Theorema System 7

:i È
i=1,¼,500

â
kÎ:j È

j=1,¼,i-1
jýi>

k = i >

86, 28, 496<

Finally, we leave the computational session:

EndComputationalSession@D
For further details on both Theorema standard sessions and Theorema computational sessions we refer to

[BuWi98] and [Wind99].

1 Computations in the Current Theorema System 8

2 The Problem

Computing in Theorema's standard session and computational session (see Section 1.2) is rather slow,

especially when dealing with big and nested data structures. So, in order to further improve the Theo-

rema system and increase its versatility and usability, it was necessary to speed-up computations. This

desire finally led to the implementation of the Theorema-Java Compiler, which is the main achievement

of this thesis.

In the following chapters we will describe the key ideas and all details of the Theorema-Java Com-

piler. It is able to translate Theorema programs into equivalent Java byte code and, thereby, makes it

possible to compute in Theorema tremendously faster than in Theorema's standard session and computa-

tional session. The road from an algorithm coded in Theorema's version of predicate logic to an equiva-

lent Java program is long, rocky, and sometimes tricky, because a lot of obstacles have to be overcome.

The difficulties in this translation basically arise from the inherent differences between the Theorema

language and the Java language, and they lead, in particular, to the following challenges:

è Theorema is not a typed language, Java is. Expressions in Theorema do not have a specific type,

whereas, on the other hand, Java is a strongly-typed programming language requiring all terms

to have a defined type.

è Theorema supports higher order functions, Java does not. Theorema supports functions that take

functions as parameters, whereas Java does not support methods that take methods as parame-

ters (in fact, this is possible in Java by using its Reflection API, but for efficiency reasons we do

not take this possibility into account). Nevertheless, the Theorema-Java Compiler does support

higher order functions by applying a well known method to introduce such functions in Java: the

method which should be passed as parameter is packed into a method of an object whose class

implements a certain Java interface.

è Theorema supports sequence variables, Java does not. Sequence variables turn out to be

extremely useful in practice since their use increases the elegance and the readability of pro-

grams. The current version of the Theorema-Java Compiler supports sequence variables at the

very end of a pattern, like for instance in f @x, y, z�D (sequence variables in Theorema are over-

bared, like z�). Although this is a limitation compared to the flexible support of sequence vari-

ables in Theorema, practice shows that this covers by far most of the cases.

è Theorema and Java are virtually two separated software systems. Nevertheless, it was necessary

to connect them somehow in order to execute an algorithm on the Java side and transfer its

result back to Theorema. In fact, Mathematica provides an interface to Java, which allows to

instantiate Java objects and to call Java methods from within Mathematica. This interface, the

so-called J/Link, was one of the reasons for choosing Java as the target language of the compiler.

In the following chapters of this part of the thesis we will give the main concepts of the Theorema-Java

Compiler and also explain all its details. We will clearly and completely illustrate the sophisticated way

the compiler combines the elegance of predicate logic, which is provided in the version of Theorema,

and the efficiency of a modern, compiled programming language, namely Java. In Chapter 3 we will

explain explicitly the three-steps procedure which is performed on every Theorema function in order to

produce its equivalent Java byte code. Chapters 4, 5, 6, and 7 deal with the details of the translation of

abstract data types, the translation of definitions with sequence variables, the translation of higher order

functions, and the translation of functors, respectively.

2 The Problem 9

In the following chapters of this part of the thesis we will give the main concepts of the Theorema-Java

Compiler and also explain all its details. We will clearly and completely illustrate the sophisticated way

the compiler combines the elegance of predicate logic, which is provided in the version of Theorema,

and the efficiency of a modern, compiled programming language, namely Java. In Chapter 3 we will

explain explicitly the three-steps procedure which is performed on every Theorema function in order to

produce its equivalent Java byte code. Chapters 4, 5, 6, and 7 deal with the details of the translation of

abstract data types, the translation of definitions with sequence variables, the translation of higher order

functions, and the translation of functors, respectively.

After all these aspects of the translation are clear, we will describe in Chapter 8 how the user can run

the compiled Java code from within Theorema. The remaining chapters of this part explain further details

of the compiler, namely specific compiler settings and the organization in the file system of both the built-

in Java files of the compiler and the files created by the user.

2.1 Why Did We Choose Java?

Java is an object-oriented, portable, and robust programming language originally developed by Sun

Microsystems (www.sun.com). We chose it as the target language of the compiler for the following

reasons:

è Java is nowadays a very popular language. It is modern and fully object-oriented and provides a

huge library of auxiliary classes.

è Mathematica provides an interface to Java, the so-called J/Link. It provides a uniquely seamless

interface to the Java environment and can be used in two ways:

è Instantiate Java classes and call their methods from within Mathematica. The J/Link-

library therefore provides Java classes (especially the class

com.wolfram.jlink.Expr) to handle Mathematica expressions in Java.

è Call Mathematica functions from within Java. This feature is not used by the compiler.

è The runtime performance of Java is really good, almost as good as C's.

è A Java compiler and the Java virtual machine are downloadable for free from the web-page of

Sun, the inventor of Java.

è Java is platform independent, i.e., the Java virtual machine is available for Windows, Linux, and

Mac OS.

è There is still an ongoing development of Java by Sun. From time to time a new version of the

compiler is released including new and improved features.

2.2 A Short Summary of Features

The Theorema-Java Compiler comes up with several features and highlights:

2 The Problem 10

è You may compile virtually any Theorema definition into executable Java code. Particularly, you

may compile whole Theorema theories and definitions containing sequence variables (see

Chapter 5) and functor definitions (see Chapter 7). This code runs much faster than computing

within Theorema.

è You may compile Theorema definition once and use the compiled and fast Java program how

many times you want.

è A special emphasis during the development of the compiler was put on the compilation of

functors.

è The compilation to Java and the execution of compiled code is completely hidden from the user.

That is, the user does not have to bother about the Java code and, actually, does not even come

into contact with it at all. Nevertheless, the user is free to read the created Java code any time.

Further information on how Java code is stored in the local file system is presented in Chapter

10.

2.3 System Requirements

The Theorema-Java Compiler requires an installed version of Theorema running on Mathematica 6 or

higher and an installed Java Development Kit (JDK) 1.5 or higher.

All calculations and time measurements presented in this thesis were performed in Mathematica 6.0.0

and JDK 1.6.0_02 under Windows XP Home (Service Pack 2) on a Mobile DualCore Intel Pentium M

with 1600 MHz and 2GB RAM.

2.4 A First Example

In this section we will show how the compiler is actually used to compile a simple Theorema theory and

how to run the created Java code. In order to use Theorema and the Theorema-Java Compiler, you have

to load the appropriate packages in Mathematica by the following commands:

Needs@"Theorema`"D
Needs@"Theorema`JavaCompiler`JavaCompiler "̀D

In this example we define the function Merge, which merges two sorted lists such that the resulting list

is again sorted, and a theory containing this definition:

2 The Problem 11

DefinitionB"Merge", any@x, x�, y, y�D,
Merge@Xx�\, X\D = Xx�\
Merge@X\, Xy�\D = Xy�\
Merge@Xx, x�\, Xy, y�\D = ; x\ Merge@Xx�\, Xy, y�\D Ü x < y

y\ Merge@Xx, x�\, Xy�\D Ü otherwise

F

Theory@"MergeTheory",
Definition@"Merge"DD

We can use this theory to compute in Theorema:

Compute@Merge@X4, 20, 30\, X1, 2, 5, 32\D,
using ® XBuilt|in@"Tuples"D, Built|in@"Numbers"D,
Built|in@"Connectives"D, Theory@"MergeTheory"D\D �� AbsoluteTiming

80.1250000, X1, 2, 4, 5, 20, 30, 32\<

So, the result is X1, 2, 4, 5, 20, 30, 32\, and it took Theorema 0.125 seconds to compute it.

Now, we may compile this theory using the Theorema-Java Compiler creating a fast Java program. For

this, we provide the command Java–Theory2Java:

Java|Theory2Java@Theory@"MergeTheory"DD
In order to access the Java program which the compiler just created and use it for computations, we first

have to put the theory "MergeTheory" into the knowledge base of the Java-sided execution process:

Java|UseTheories@8"MergeTheory"<D
Finally, we can use the Java program for executing a computation:

Java|Compute@Merge@X4, 20, 30\, X1, 2, 5, 32\DD �� AbsoluteTiming

80.0156250, X1, 2, 4, 5, 20, 30, 32\<

The result is the same as above, but the compiled Java program needed just 0.0156 seconds to produce it.

2 The Problem 12

3 The Three Steps of Translation

In this chapter we describe the three general steps to translate given Theorema definitions into executable

Java byte code. These steps are performed in all cases, no matter whether a single definition, a whole

theory including several definitions, or a functor is compiled. The first and the last step are quite simple

to perform, whereas the second step is more involved since it includes quite challenging steps, for

instance, translating sequence variables and higher order function.

In the course of translating a given Theorema function (or functor), its Theorema definition is first

transcribed into an intermediate format rid of pattern matching. In the second step, which is also the core

step in the whole three-stage translation, each function definition, given in the intermediate format, is

translated into (well readable) Java source code. The basics of this step are described in Section 3.2. All

the details on how to translate abstract data types, definitions including sequence variables, higher order

function, and functors are described in full detail in the chapters 4, 5, 6, 7, respectively. In the third step,

the Java source code is compiled to byte code using a conventional Java compiler. These three steps are

always performed and, thereby, form the general flow of translation, which is depicted in Figure 3.1.

Figure 3.1: Flow of Translation

3.1 Eliminating Pattern Matching

Pattern matching is a very powerful and flexible tool to process data based on its structure. Its real power

comes from matching patterns and accordingly bind variables at the same time. Together with condi-

tional execution constructs, pattern matching leads to a very elegant and structured way of programming.

Both Mathematica and Theorema support defining functions using these mechanisms, and the following

example shows how they can be used in Theorema: The function Ind–Plus adds two natural numbers

that are represented by the following data structure: 0 is represented by the constant Zero, 1 is repre-

sented by Succ[Zero], 2 by Succ[Succ[Zero]], 3 by Succ[Succ[Succ[Zero]]], and so

on.

3 The Three Steps of Translation 13

DefinitionB"InductivePlus", any@x, yD,
Ind|Plus@x, ZeroD = x
Ind|Plus@x, Succ@yDD = Succ@Ind|Plus@x, yDDF

The function distinguishes two cases that are detected by pattern matching. The first rewrite rule

Ind|Plus@x, ZeroD = x

only matches if the second parameter is equal to the constant Zero. The second rewrite rule

Ind|Plus@x, Succ@yDD = Succ@Ind|Plus@x, yDD
only matches if the head of the second parameter is equal to the constant Succ.

In order to add the natural numbers 2 and 3, you compute:

Compute@Ind|Plus@Succ@Succ@ZeroDD, Succ@Succ@Succ@ZeroDDDD,
using ® XDefinition@"InductivePlus"D\D

Succ@Succ@Succ@Succ@Succ@ZeroDDDDD

Already this simple example demonstrates the increased elegance and readability of programs which use

pattern matting for their definition. However, Java does not support such mechanisms, and, hence, the

first step on the way of translating a Theorema definition into Java code is always to eliminate pattern

matching. For that, the Theorema-Java Compiler translates the Theorema definitions into an intermediate

language rid of pattern matching. Both the intermediate language and the Mathematica package which

does this elimination were originally developed by Tudor Jebelean ([Jebe07]) and later adapted by the

author. The following line shows how the function Ind–Plus from above can be defined in Mathemat-

ica without pattern matching:

Ind|Plus@x_, y_D :=

If@y === Zero, x, If@Head@yD === Succ, Succ@Ind|Plus@x, y@@1DDDDDD;
Instead of defining two cases which are distinguished by the pattern of the second parameter of the

function, this definition uses an If-clause and explicitly checks the structure of y by evaluating

y===Zero and Head[y]===Succ. You may again compute 2 plus 3:

Ind|Plus@Succ@Succ@ZeroDD, Succ@Succ@Succ@ZeroDDDD
Succ@Succ@Succ@Succ@Succ@ZeroDDDDD

The function Ind–Plus coded in the above mentioned intermediate language is:

·DeFun@·sig@"Ind|Plus"D, X_param1, _param2\,
·Conditional@XX·const@ZeroD = _param2, _param1\,X·const@SuccD = ·Head@_param2D, ·Expr@·const@SuccD,X·Expr@·const@Ind|PlusD, X_param1, ·Arg@1, _param2D\D\D\\DD

This expression consists of 4 parts: The head •DeFun indicates that this is a function definition;

•DePre would indicate a predicate definition. The first part, •sig["Ind–Plus"], states the name of

this function, and the second part, X_param1, _param2\, states the parameter list. The third part,

•Conditional[…], defines the body of the function and is a list of condition-expression pairs; if a

condition holds, the corresponding expression is returned. Accordingly, in the case of a predicate

definition, the body is a list of condition-condition pairs.

3 The Three Steps of Translation 14

This expression consists of 4 parts: The head •DeFun indicates that this is a function definition;

•DePre would indicate a predicate definition. The first part, •sig["Ind–Plus"], states the name of

this function, and the second part, X_param1, _param2\, states the parameter list. The third part,

•Conditional[…], defines the body of the function and is a list of condition-expression pairs; if a

condition holds, the corresponding expression is returned. Accordingly, in the case of a predicate

definition, the body is a list of condition-condition pairs.

In the remaining part of this section we will explain the elimination of pattern matching in general by

considering a unary function. A function of arity n can be translated by iteratively applying the transcrip-

tion presented below.

The left hand side of the definition of a unary function f may basically have either the form f@cD
where c is a constant symbol, either the form f@xD where x is a variable, or the form

f@C@x1, ..., xnDD, where C is constructor (see Chapter 4) of arity n and xi (for 1 £ i £ n) is

either a constant symbol, a variable, or again a nested expression of the form D@ ...D where D is a

constructor. Note that a more flexible shape of function definitions is possible if sequence variables are

used, see Chapter 5.

The general shape of f coded in the intermediate language looks like this:

·DeFun@·sig@"f"D, X_param1\, ·Conditional@XXCondition, Expression\\DD
where Condition and Expression are a condition and an expression, respectively, depending on f .

As stated above, we have to distinguish three cases: If f has the form f[c] = e (where e is some

expression), Condition has the following value

X·const@cD = _param1, e*\
where e* is the translation of e into the intermediate format. If f is of the form f[x] = e,

Condition is

Xtrue, e*\
because there is no condition on the parameter, and e* is again the translation of e into the intermediate

format. If f is of the third shape, f@C@x1, ¼, xnDD = e, the Condition looks like this:

XH·const@CD = ·Head@_param1DL ì T, e*\
e* is obtained by translating e into the intermediate format and replacing xi by ·Arg@i, _param1D
(for all 1 £ i £ n), a construct of the intermediate language which accesses the i-th component of

_param1. T is obtained by applying this three-folded case distinction recursively to x1, ..., xn and

forming the conjunction. To address xi and formulate a condition on it, it is also replaced by

·Arg@i, _param1D.

For example, the function definition f@C@x, D@yD, E@aDDD = e (where C, D, and E are

constructors, a is a constant symbol, and x and y are variables) is translated into the function body

3 The Three Steps of Translation 15

XH·const@CD = ·Head@_param1DL ì H·const@DD = ·Head@·Arg@2, _param1DDL ìH·const@ED = ·Head@·Arg@3, _param1DDL ìH·const@aD = ·Arg@3, ·Arg@1, _param1DDL, e*\
where e* is obtained by translating e into the intermediate format and replacing x and y by

·Arg@1, _param1D and ·Arg@2, ·Arg@2, _param1DD, respectively.

This translation is accordingly applied to predicate definitions.

3.2 Creating Java Source Code

The second step on the way of translating a Theorema definition into executable Java code is to turn

definitions in intermediate format into actual Java source code.

Each function and each predicate (given in intermediate format) is parsed, and all occurring condi-

tions and expressions are translated into Java code. Of course, this process of translation is a recursive

procedure since each condition and each expression may again contain conditions and expressions. In

other words, the definition of a function, which is made up of nested conditions and expressions, is

recursively translated into Java code.

Also, since Theorema and Java have different naming conventions (e.g., Theorema allows dashes in

names, Java does not), a renaming of identifiers (variables, class names, etc.) has to be performed: All

appearing language keywords of Java (e.g., while, for, new) are changed by prepending and append-

ing an underscore, and dashes are replaced by underscores, and blanks are eliminated.

The real challenge of this step is the translation of language constructs in Theorema which do not

exist in Java, for instance, sequence variables, higher order functions, quantifiers, and functors. To see

how the translation of a simple function works, let us take the example from the previous section and

have a look at the body of the function Ind–Plus in intermediate format:

·Conditional@XX·const@ZeroD = _param2, _param1\,X·const@SuccD = ·Head@_param2D, ·Expr@·const@SuccD,X·Expr@·const@Ind|PlusD, X_param1, ·Arg@1, _param2D\D\D\\D
The head of this body is •Conditional, hence, we know that we have to create a branching statement

(if-clause). Since we are about to define a function (•DeFun), the •Conditional-expression

contains a tuple of pairs of one condition and one expression, whereas in the case of defining a predicate

it would contain a tuple of pairs of two conditions. In this example the first pair is

X·const@ZeroD = _param2, _param1\
So, we translate the first entry of the tuple into the Java condition (see also the translation of abstract data

types in Chapter 4):

HHHExtendedDataL_param2L.isZeroHLL
The second entry of the tuple, i.e., the value which is returned by Ind–Plus if the condition in the first

tuple entry is fulfilled, is trivially translated into the Java expression

3 The Three Steps of Translation 16

_param1

In the same way, the second pair

X·const@SuccD = ·Head@_param2D, ·Expr@·const@SuccD,X·Expr@·const@Ind|PlusD, X_param1, ·Arg@1, _param2D\D\D\
is translated into Java code. The translation of the condition is

HHHExtendedDataL_param2L.isSuccHLL
The translation of the expression is

new SuccHind_PlusH_param1,_param2.argH1LLL
Finally, the two conditions and the two expressions are put together according to the rules of

•Conditional. So, the Java code of the function Ind–Plus is:

Data ind_PlusHData _param1,Data _param2L8
if HHHHExtendedDataL_param2L.isZeroHLLL8

return _param1;<��if
if HHHHExtendedDataL_param2L.isSuccHLLL8

return new SuccHind_PlusH_param1,_param2.argH1LLL;<��if<��ind_Plus

In general, the translation of functions and predicates from intermediate format into Java code consists of

three major parts: the translation of conditions, the translation of expressions, and the translation of

conditional branchings. Compiling conditions comprises the translation of truth values, logical functions

(AND, OR, NOT), equalities, the " bounded quantifier, and the $ bounded quantifier. Compiling expres-

sions comprises the translation of tuples, the TupleOf quantifier (X È \), the SetOf quantifier (8 È <),

the Ú quantifier, the SuchThat quantifier (æ), sequence variables, and constants. Many of these transla-

tions involve technical details, like dealing with sequence variables (see Chapter 5), or calling a function

of a certain domain (see Chapter 7). Moreover, special efforts have to be made to translate the bounded

quantifier constructs, i.e., TupleOf, SetOf, ", $, Ú, and SuchThat, into correct Java code. The created

Java code of a translated quantifier is packed into an auxiliary method named "auxn" (where n is 1,2,3,…

), and this method is called with the appropriate parameters.

In the following sections we will describe in detail the translation of each quantifier into Java source

code. For this, for each quantifier, we will define a function f in Theorema-like syntax using a general

form of the quantifier and show its equivalent on the Java side, written in a Java-like syntax.

3 The Three Steps of Translation 17

3.2.1 The TupleOf Quantifier

Theorema supports two types of this quantifier, which differ in the range the index variable runs over.

The first type uses a so-called integer range and has the following form:

f@x1, ¼, xnD = [g@i, x1, ¼, xnD È
i=h@x1,¼,xnD,¼,k@x1,¼,xnD c@i, x1, ¼, xnD_

The index variable i runs from the value h@x1, ¼, xnD to the value k@x1, ¼, xnD; if the condition

c@i, x1, ¼, xnD holds, the element g@i, x1, ¼, xnD becomes part of the generated tuple. The

compiler translates this function definition into the following code, which is given here in a Java-like

syntax:

Data fHData param1,¼ ,Data paramnL8
return aux1Hparam1,¼ ,paramn,hHparam1,¼ ,paramnL,kHparam1,¼ ,paramnLL;<��f

Tuple aux1HData param1,¼ ,Data paramn,int auxvar1,int auxvar2L8
Data@D auxvar3 = new Data@auxvar2-auxvar1+1D;
int auxvar4 = 0;

forHint i=auxvar1;i£auxvar_2;i++L
if HcHi,param1,¼ ,paramnLL8

auxvar3@auxvar4D = gHi,param1,¼ ,paramnL;
auxvar4++;<��if

return new TupleHauxvar3,auxvar4L;<��aux1
So, the TupleOf quantifier with an integer range is translated into a separate auxiliary method which

essentially consists of a for loop.

The second type of the TupleOf quantifier uses a so-called set range and has the following form:

f@x1, ¼, xn, SD = [g@i, x1, ¼, xnD È
iÎS

c@i, x1, ¼, xnD_
The index variable i runs through the values of the set S; whenever the condition c@i, x1, ¼, xnD
holds, the element g@i, x1, ¼, xnD becomes part of the generated tuple. The compiler translates this

function definition into the following code, which is given again in a Java-like syntax:

3 The Three Steps of Translation 18

Data fHData param1,¼ ,Data paramn,Data SL8
return aux1Hparam1,¼ ,paramn,SL;<��f

Tuple aux1HData param1,¼ ,Data paramn,Set sL8
int auxvar3 = 0;

int auxvar4 = s.sizeHL;
Data i;

Data@D auxvar1 = new Data@auxvar4D;
forHint auxvar5=0;auxvar5<auxvar4;auxvar5++L8

i = s.argHauxvar5+1L;
if HcHi,param1,¼ ,paramnLL8

auxvar1@auxvar3D = gHi,param1,¼ ,paramnL;
auxvar3++;<��if<��for

return new TupleHauxvar1,auxvar3L;<��aux1
So, the TupleOf quantifier with a set range is translated into a separate auxiliary method which essen-

tially consists of a for loop.

3.2.2 The SetOf Quantifier

The SetOf quantifier is very similar to the TupleOf quantifier: instead of square brackets it uses curly

brackets, and instead of the Java type Tuple it uses Set.

3.2.3 The Ú Quantifier

The Ú quantifier also comes in two forms: one with an integer range, one with a set range. The first one

has the following shape:

f@x1, ¼, xnD = â
i=h@x1,¼,xnD,¼,k@x1,¼,xnD

c@i,x1,¼,xnD
g@i, x1, ¼, xnD

It is translated into the following code:

3 The Three Steps of Translation 19

Data fHData param1,¼ ,Data paramnL8
return aux1Hparam1,¼ ,paramn,hHparam1,¼ ,paramnL,kHparam1,¼ ,paramnLL;<��f

BI_Number aux1HData param1,¼ ,Data paramn,int auxvar1,int auxvar2L8
BI_Rational auxvar3 = BI_Rational.ZERO;

forHint i=auxvar1;i£auxvar2;i++L
if HcHi,param1,¼ ,paramnLL

auxvar3 = gHi,param1,¼ ,paramnL;
return auxvar3;<��aux1

The second type of the Ú quantifier, which uses a set range, has the following form:

f@x1, ¼, xn, SD = â
iÎS

c@i,x1,¼,xnD
g@i, x1, ¼, xnD

Its corresponding Java code is:

Data fHData param1,¼ ,Data paramn,Data SL8
return aux1Hparam1,¼ ,paramn,SL;<��f

BI_Number aux1HData param1,¼ ,Data paramn,Set sL8
int auxvar3 = s.sizeHL;
Data i;

BI_Rational auxvar1 = BI_Rational.ZERO;

forHint auxvar4=0;auxvar4<auxvar3;auxvar4++L8
i = s.argHauxvar4+1L;
if HcHi,param1,¼ ,paramnLL

auxvar1 = HBI_RationalLauxvar1.addHgHi,param1,¼ ,paramnLL;<��for
return auxvar1;<��aux1

3.2.4 The SuchThat Quantifier

The SuchThat quantifier(æ) is used in explicit definitions of new function symbols, where it actually is

only used as an abbreviation for an implicit definition of the new symbol. For example,

"
x

f@xD = æ
y

 Iy2 = xM
is considered as an abbreviation of the formula

3 The Three Steps of Translation 20

is considered as an abbreviation of the formula

"
x

If@xD2 = xM
Also the SuchThat quantifier comes in two shapes, the one with the integer range looks like this:

f@x1, ¼, xnD = æ
i=h@x1,¼,xnD,¼,k@x1,¼,xnD

c@i,x1,¼,xnD
 g@i, x1, ¼, xnD

It is translated into the following Java code:

Data fHData param1,¼ ,Data paramnL8
return aux1Hparam1,¼ ,paramn,hHparam1,¼ ,paramnL,kHparam1,¼ ,paramnLL;<��f

Data aux1HData param1,¼ ,Data paramn,int auxvar1,int auxvar2L8
forHint i=auxvar1;i£auxvar2;i++L

ifHcHi,x1,¼ ,xnL && gHi,param1,¼ ,paramnLL
return BI_Integer.valueOfHiL;

return null;<��aux1
The second one, which uses a set range, has the following form:

f@x1, ¼, xn, SD = æ
iÎS

c@i,x1,¼,xnD
 g@i, x1, ¼, xnD

It is translated into:

Data fHData param1,¼ ,Data paramn,Data SL8
return aux1Hparam1,¼ ,paramn,SL;<��f

Data aux1HData param1,¼ ,Data paramn,Set sL8
int auxvar1 = S.sizeHL;
Data i;

forHint auxvar2=0;auxvar2<auxvar1;auxvar_2++L8
i = s.argHauxvar3+1L;
ifHcHi,x1,¼ ,xnL && gHi,param1,¼ ,paramnLL

return i;<��for
return null;<��aux1

3 The Three Steps of Translation 21

3.2.5 The " Quantifier

A typical usage of the " quantifier using an integer range looks like this:

p@x1, ¼, xnD � "
i=h@x1,¼,xnD,¼,k@x1,¼,xnD

c@i,x1,¼,xnD
g@i, x1, ¼, xnD

The Theorema-Java Compiler translates this predicate into the following code:

BooleanData pHData param1,¼ ,Data paramnL8
return convertBooleanToDataHaux1Hparam1,¼ ,paramn,hHparam1,¼ ,paramnL,

kHparam1,¼ ,paramnLLL;<��p
boolean aux1HData param1,¼ ,Data paramn,int auxvar1,int auxvar2L8

forHint i=auxvar1;i£auxvar2;i++L
ifHcHi,x1,¼ ,xnL && !gHi,param1,¼ ,paramnLL

return false;

return true;<��aux1
Using a set range, the " quantifier typically comes in this shape:

p@x1, ¼, xn, SD � "
iÎS

c@i,x1,¼,xnD
g@i, x1, ¼, xnD

The translated code in the Java-like syntax is:

3 The Three Steps of Translation 22

BooleanData pHData param1,¼ ,Data paramn,Data SL8
return convertBooleanToDataHaux1Hparam1,¼ ,paramn,SLL;<��p

boolean aux1HData param1,¼ ,Data paramn,Set sL8
int auxvar1 = s.sizeHL;
Data i;

forHint auxvar2=0;auxvar2<auxvar1;auxvar2++L8
i = s.argHauxvar2+1L;
ifHcHi,x1,¼ ,xnL && !gHi,param1,¼ ,paramnLL

return false;<��for
return true;<��aux1

3.2.6 The $ Quantifier

The $ quantifier also comes in two forms: one with an integer range, one with a set range. The first one

has the following shape:

p@x1, ¼, xnD � $
i=h@x1,¼,xnD,¼,k@x1,¼,xnD

c@i,x1,¼,xnD
g@i, x1, ¼, xnD

The corresponding code is:

BooleanData pHData param1,¼ ,Data paramnL8
return convertBooleanToDataHaux1Hparam1,¼ ,paramn,hHparam1,¼ ,paramnL,

kHparam1,¼ ,paramnLLL;<��p
boolean aux1HData param1,¼ ,Data paramn,int auxvar1,int auxvar2L8

forHint i=auxvar1;i£auxvar2;i++L
ifHcHi,x1,¼ ,xnL && gHi,param1,¼ ,paramnLL

return true;

return false;<��aux1
The second form is:

p@x1, ¼, xn, SD � $
iÎS

c@i,x1,¼,xnD
g@i, x1, ¼, xnD

Its corresponding code is:

3 The Three Steps of Translation 23

Its corresponding code is:

BooleanData pHData param1,¼ ,Data paramn,Data SL8
return convertBooleanToDataHaux1Hparam1,¼ ,paramn,SLL;<��p

boolean aux1HData param1,¼ ,Data paramn,Set sL8
int auxvar1 = s.sizeHL;
Data i;

forHint auxvar2=0;auxvar2<auxvar1;auxvar2++L8
i = s.argHauxvar2+1L;
ifHcHi,x1,¼ ,xnL && gHi,param1,¼ ,paramnLL

return true;<��for
return false;<��aux1

3.3 Creating Java Byte Code

The final step of the translation from Theorema to Java is the compilation of the created Java source

code to Java byte code. This can be done by any available Java compiler which supports the JDK 1.5 or

newer. We recommend to use Sun's compiler since we did all the tests with this one (Sun's JDK 1.6). The

user must assure that the Java compiler (javac) is accessible, i.e., the system environment variable

PATH has to be set accordingly. After the Java source files were successfully created, the Theorema-Java

Compiler automatically calls javac to compile all produced source files to Java byte code.

3 The Three Steps of Translation 24

4 Translation of Abstract Data Types

The Theorema-Java Compiler supports the translation of abstract data types that are defined in Theo-

rema into Java code. In this part of the thesis we show first a simple example and then explain the

general way of the translation in full detail. The original ideas and examples presented in this chapter

were mainly given by Martin Giese ([Gies07]).

4.1 An Example: Plus

This example is quite similar to the one in Section 3.1; it just uses a more natural notation. Again, we

define the integers inductively: 0 is represented by the constant Z, 1 is represented by Z+, 2 by Z++, 3

by Z+++, etc. Please note that an expression of the form T+ is internally stored as SuperPlus@TD, for

every expression T . Similarly, an expression of the form T + S (for expression S and T) is internally

stored as Plus@S, TD. For instance, the addition 2+3 is represented by the expression Z++ + Z+++,

which is internally stored as

Plus@SuperPlus@SuperPlus@ZDD, SuperPlus@SuperPlus@SuperPlus@ZDDDD.

Here is the definition of the function Plus and the associated theory:

DefinitionB"Plus", any@x, yD,
x + Z = x

x + y+ = Hx + yL+F
Theory@"Plus",

Definition@"Plus"DD
If we, for instance, want to add 2 and 3, we simply compute

ComputeAZ++ + Z+++
, using ® XTheory@"Plus"D\E

JIIHZ+L+M+M+N+

To compile this Theorema theory to Java we have to enter

Java|Theory2Java@Theory@"Plus"DD
In the second step of the general, three-stage flow of translation (see Chapter 3) the compiler has to

create a Java-sided representation of the constant symbol Z and of the unary symbol SuperPlus, which

is the internal representation of +. The symbols Z and SuperPlus are called constructors, which are

generally represented by Java classes. What can these classes look like? At this point, typecasting plays a

crucial rôle. In the current design of the Theorema-Java Compiler the type of all parameters of all user

defined functions has to be Data, which is an abstract class provided by the framework of the Theorema-

Java Compiler, see Section 10.2.1. Since Z is a possible parameter of the function Plus, the representa-

tion of the constant Z on the Java side has to be a class that is a subclass of Data. Accordingly, the

representation of SuperPlus is a class that is also a subclass of Data and has a constructor taking one

parameter of type Data. Actually, these representation classes are not direct subclasses of Data, but are

derived from the intermediate, abstract class ExtendedData, which is directly subclassing Data and

also created automatically by the compiler.

4 Translation of Abstract Data Types 25

In the second step of the general, three-stage flow of translation (see Chapter 3) the compiler has to

create a Java-sided representation of the constant symbol Z and of the unary symbol SuperPlus, which

is the internal representation of +. The symbols Z and SuperPlus are called constructors, which are

generally represented by Java classes. What can these classes look like? At this point, typecasting plays a

crucial rôle. In the current design of the Theorema-Java Compiler the type of all parameters of all user

defined functions has to be Data, which is an abstract class provided by the framework of the Theorema-

Java Compiler, see Section 10.2.1. Since Z is a possible parameter of the function Plus, the representa-

tion of the constant Z on the Java side has to be a class that is a subclass of Data. Accordingly, the

representation of SuperPlus is a class that is also a subclass of Data and has a constructor taking one

parameter of type Data. Actually, these representation classes are not direct subclasses of Data, but are

derived from the intermediate, abstract class ExtendedData, which is directly subclassing Data and

also created automatically by the compiler.

Figure 4.1 shows the UML class diagram of these classes. In this figure, the Data class is colored in

grey since it is not created automatically in the flow of translation, but provided by the framework of the

Theorema-Java Compiler. The three other classes, which are created completely automatically by the

compiler, are colored in black.

Figure 4.1: UML Diagram of the Classes of the Theory "Plus"

We will now present the actual implementation of the representation classes, according to the class

model in Figure 4.1. The first Java class which is created is ExtendedData. It is an abstract class and

a direct subclass of Data. Moreover, it contains identifying methods for its two possible implementa-

tions, namely the class Z and the class SuperPlus. That is, it contains boolean, non-abstract functions

isZ and isSuperPlus, which both return false in their implementation in ExtendedData.

4 Translation of Abstract Data Types 26

public abstract class ExtendedData extends Data8
public boolean isZHL8

return false;<��isZ
public boolean isSuperPlusHL8

return false;<��isSuperPlus<��class ExtendedData

The class Z is a direct subclass of ExtendedData and overloads the function isZ, which returns

true in the class Z. Furthermore, it implements the function equal (and also others which are omitted

here for the sake of simplicity), which is (are) inherited from Data.

public class Z extends ExtendedData8
public boolean isZHL8

return true;<��isZ
public boolean equalHData xL8

if Hx instanceof ExtendedDataL8
return HHHExtendedDataLxL.isZHLL;<��if

else8
return false;<��else<��equal

...

<��class Z

The class SuperPlus is also a direct subclass of ExtendedData but overloads the function isSu-

perPlus, which returns true in the class SuperPlus. Like the class Z, it has to implement the

function equal (and also others which are again omitted here for the sake of simplicity), because it is

(are) inherited from the abstract class Data.

4 Translation of Abstract Data Types 27

public class SuperPlus extends ExtendedData8
private Data arg1;

public SuperPlusHData arg1L8
this.arg1=arg1;<��SuperPlus

public boolean isSuperPlusHL8
return true;<��isSuperPlus

public Data argHint nL8
if Hn�1L8

return arg1;<��if
return null;<��arg

public boolean equalHData xL8
if Hx instanceof ExtendedDataL8

return HHHExtendedDataLxL.isSuperPlusHL&&
argH1L.equalHHHSuperPlusLxL.argH1LLL;<��if

else8
return false;<��else<��equal

...

<��class SuperPlus

The classes Z and SuperPlus can now be used to express the chosen data structure. Given the Java

classes above, we can, for instance, create the object Z+++
 (representing the natural number 3) as a Java

object:

new SuperPlusHnew SuperPlusHnew SuperPlusHnew ZeroHLLLL

4 Translation of Abstract Data Types 28

As the final step, we have to translate the algorithm Plus into Java source code. Generally, all algo-

rithms of a theory are collected in the class Algorithms. As shown in Section 3.2, each rewrite rule in

the Theorema definition of Plus is translated (via the intermediate language) into an if-clause on the

Java side. The signature of the Java implementation of Plus is

Data plusHData _param1,Data _param2L
The first rewrite rule in the definition of Plus

x + Z = x

is translated into

if HHHHExtendedDataL_param2L.isZHLLL8
return _param1;<��if

Accordingly, the second rewrite rule

x + y+ = Hx + yL+

is translated into

if HHHHExtendedDataL_param2L.isSuperPlusHLLL8
return new SuperPlusHplusH_param1,_param2.argH1LLL;<��if

Hence, the whole Algorithms class looks like this:

public class Algorithms8
public static Data plusHData _param1,Data _param2L8

if HHHHExtendedDataL_param2L.isZHLLL8
return _param1;<��if

if HHHHExtendedDataL_param2L.isSuperPlusHLLL8
return new SuperPlusHplusH_param1,_param2.argH1LLL;<��if

return null;<��plus<��class Algorithms

This is the well structured and well readable Java source code which the Theorema-Java Compiler finally

created and compiled to Java byte code. If we want to use it for computations, we first have to put the

theory "Plus" into the knowledgebase of the Java-sided execution process:

4 Translation of Abstract Data Types 29

This is the well structured and well readable Java source code which the Theorema-Java Compiler finally

created and compiled to Java byte code. If we want to use it for computations, we first have to put the

theory "Plus" into the knowledgebase of the Java-sided execution process:

Java|UseTheories@8"Plus"<D
We may now compute 2+3:

Java|ComputeAZ++ + Z+++E
JIIHZ+L+M+M+N+

Before describing the details of the general aspects of this translation in the next section, we want to

easily broaden the above example by adding another algorithm, namely multiplication. Thus, we define

the multiplication in our inductive data structure:

DefinitionB"Times", any@x, yD,
x*Z = Z
x*y+ = x*y + x
Z*y = Z
x+ *y = y + x*y

F

TheoryB"Plus|Times",

Definition@"Plus"D
Definition@"Times"DF

We may compute (1+2)*3:

ComputeAIZ+ + Z++M *Z+++
, using ® XTheory@"Plus|Times"D\E

KJIIHZ+L+M+M+N+O
+ + + +

The result is, as expected, 9. Let us compile the theory and have a look at its corresponding Java source

code:

Java|Theory2Java@Theory@"Plus|Times"DD
The thereby created class Algorithms is identical to the one shown above except that it has an

additional method times:

4 Translation of Abstract Data Types 30

public static Data timesHData _param1,Data _param2L8
if HHHHExtendedDataL_param2L.isZHLLL8

return ExtendedFactory.getZHL;<��if
if HHHHExtendedDataL_param2L.isSuperPlusHLLL8

return plusHtimesH_param1,_param2.argH1LL,_param1L;<��if
if HHHHExtendedDataL_param1L.isZHLLL8

return ExtendedFactory.getZHL;<��if
if HHHHExtendedDataL_param1L.isSuperPlusHLLL8

return plusH_param2,timesH_param1.argH1L,_param2LL;<��if
return null;<��times

Again, we may now compute using the compiled Java code:

Java|UseTheories@8"Plus|Times"<D
Java|ComputeAIZ+ + Z++M *Z+++E

KJIIHZ+L+M+M+N+O
+ + + +

4.2 General Translation

In the previous section we exemplarily presented Theorema programs which work on a data structure

that is built by so-called constructor terms, and we showed its corresponding Java source code. We will

now explain the translation of such Theorema programs into Java source code in full generality.

The idea for the current way of translation of such programs was given by Martin Giese, [Gies07],

and is a general concept which associates to each type of constructor term a Java class. A constructor is a

constant symbol with a certain arity and a name that is different from all the names of algorithms in the

current knowledge base. Please note that also the angle brackets (X…\) can be viewed as constructors,

but with an arbitrary arity. A common example of a data structure using constructors are Lisp-style lists:

Given the 0-ary constructor nil and the binary constructor cons, we can easily construct lists of

arbitrary length, e.g., the term cons[18,cons[0,cons[7,nil]]] is the representation of the listX18,0,7\. Another example is the representation of multivariate polynomials: Given the binary

constructor Mon and the n-arity constructor PP, we can represent polynomials in n variables. For

instance, the polynomial 7 x2 y z3 - 2 y z + 5 z can be represented by the tupleXMon[7,PP[2,1,3]],Mon[-2,PP[0,1,1]],Mon[5,PP[0,0,1]]\.

Given a Theorema theory, we can extract both the occurring constructors and the defined algorithms.

Hence, in the general, three-part flow of translation (see Chapter 3), the compiler now has to do more in

Step 2: beside translating the algorithms into Java source code, it has to create a representation of all

occurring constructors. In the course of this these constructors are divided into two parts: the 0-ary

constructors C0,1, ¼ , C0,n0
 and the constructors Ci,1, ¼ , Ci,ni

 of arity i and i > 0. In the current imple-

mentation of the compiler each constructor is represented by a Java class, which is automatically created

when the associated Theorema theory is compiled. All these Java classes are derived from the intermedi-

ate class ExtendedData, which is abstract and directly derived from Data (provided by the frame-

work of the Theorema-Java Compiler, see Section 10.2.1). ExtendedData is also created automati-

cally and contains identifying methods for each constructor class.

Figure 4.2 shows the over-all class design as an UML class diagram. For the sake of clarity, for each

of the two types of constructors, namely the 0-ary ones and the non-zero-ary ones, only one representa-

tive class is depicted: the class C0,j stands for a 0-ary constructor, the class Ci,j stands for a constructor

of arity i with i > 0. Furthermore, the Data class is colored in grey to indicate that it is not created

automatically in the flow of translation, but provided by the framework of the Theorema-Java Compiler.

The figure schematically shows several properties of the automatically generated classes:

4 Translation of Abstract Data Types 31

The idea for the current way of translation of such programs was given by Martin Giese, [Gies07],

and is a general concept which associates to each type of constructor term a Java class. A constructor is a

constant symbol with a certain arity and a name that is different from all the names of algorithms in the

current knowledge base. Please note that also the angle brackets (X…\) can be viewed as constructors,

but with an arbitrary arity. A common example of a data structure using constructors are Lisp-style lists:

Given the 0-ary constructor nil and the binary constructor cons, we can easily construct lists of

arbitrary length, e.g., the term cons[18,cons[0,cons[7,nil]]] is the representation of the listX18,0,7\. Another example is the representation of multivariate polynomials: Given the binary

constructor Mon and the n-arity constructor PP, we can represent polynomials in n variables. For

instance, the polynomial 7 x2 y z3 - 2 y z + 5 z can be represented by the tupleXMon[7,PP[2,1,3]],Mon[-2,PP[0,1,1]],Mon[5,PP[0,0,1]]\.

Given a Theorema theory, we can extract both the occurring constructors and the defined algorithms.

Hence, in the general, three-part flow of translation (see Chapter 3), the compiler now has to do more in

Step 2: beside translating the algorithms into Java source code, it has to create a representation of all

occurring constructors. In the course of this these constructors are divided into two parts: the 0-ary

constructors C0,1, ¼ , C0,n0
 and the constructors Ci,1, ¼ , Ci,ni

 of arity i and i > 0. In the current imple-

mentation of the compiler each constructor is represented by a Java class, which is automatically created

when the associated Theorema theory is compiled. All these Java classes are derived from the intermedi-

ate class ExtendedData, which is abstract and directly derived from Data (provided by the frame-

work of the Theorema-Java Compiler, see Section 10.2.1). ExtendedData is also created automati-

cally and contains identifying methods for each constructor class.

Figure 4.2 shows the over-all class design as an UML class diagram. For the sake of clarity, for each

of the two types of constructors, namely the 0-ary ones and the non-zero-ary ones, only one representa-

tive class is depicted: the class C0,j stands for a 0-ary constructor, the class Ci,j stands for a constructor

of arity i with i > 0. Furthermore, the Data class is colored in grey to indicate that it is not created

automatically in the flow of translation, but provided by the framework of the Theorema-Java Compiler.

The figure schematically shows several properties of the automatically generated classes:

è For every occurring constructor the class ExtendedData contains an identifying boolean

method isCi,j (i ³ 0, 1 £ j £ ni) which yields false.

è The class C0,j, representing a constructor of arity zero, overwrites ExtendedData's method

isC0,j by a method returning true. By necessity, the class C0,j also implements the methods

arg and equal, which are inherited from the abstract class Data.

è The class Ci,j, representing a constructor of arity i Hi > 0L, overwrites ExtendedData's

method isCi,j by a method returning true. By necessity, the class Ci,j also implements the

methods arg and equal, which are inherited from the abstract class Data. Furthermore, it

contains i private fields of type Data and a constructor of arity i.

4 Translation of Abstract Data Types 32

Figure 4.2: UML Diagram for the Classes of a General Theory

4.3 Time Measurements

As a first demonstration of the Theorema-Java Compiler's power, we will now show the tremendous

speed-up it can achieve. Using again the representation of natural numbers given in Section 4.1, we want

now to compute values of the following mathematical function Binom4:

Binom4@n, mD = KK n
m

O mod 4O
A recursive definition of this function, using the well known identity

n

m
=

n - 1

m - 1
+

n - 1
m

 for

n, m > 0, is:

Binom4@n, mD =
1 Ü m = 0
1 Ü n = mHBinom4@n - 1, m - 1D + Binom4@n - 1, mDL mod 4 Ü otherwise

A possible Theorema implementation of this function working on the above mentioned representation of

natural numbers is:

4 Translation of Abstract Data Types 33

DefinitionB"Mod4", any@xD,
Mod4Bx++++F = Mod4@xD
Mod4@xD = x

F

DefinitionB"Binom4", any@n, mD,
Binom4@n, ZD = Z+

Binom4@n, nD = Z+

Binom4@n+, m+D =

Mod4@Binom4@n, mD + Binom4@n, m+DD
F

The theory "Binom4" collects the definitions of Mod4, Binom4, and Plus (the latter one is taken from

Section 4.1):

TheoryB"Binom4",
Definition@"Plus"D
Definition@"Mod4"D
Definition@"Binom4"DF

We may now compile this theory to Java by

Java|Theory2Java@Theory@"Binom4"DD
and also load it:

Java|UseTheories@8"Binom4"<D
As a first example we want to compute Binom4[15,7]. Using the Mathematica built-in functions Mod

and Binomial, we find that:

Mod@Binomial@15, 7D, 4D
3

For computing Binom4[15,7] in a computational session of Theorema, we execute:

ComputationalSession@D
Use@XTheory@"Binom4"D\D
Binom4BZ+++++++++++++++

, Z+++++++F �� AbsoluteTiming

EndComputationalSession@D
90.3437500, IHZ+L+M+=

The same computation on the Java side is achieved by

4 Translation of Abstract Data Types 34

Java|ComputeBBinom4BZ+++++++++++++++

, Z+++++++FF �� AbsoluteTiming

90.0156250, IHZ+L+M+=

Hence, the speed-up factor in this example is about 20. As a second example, let us compute

Binom4[19,9]. Mathematica tells us

Mod@Binomial@19, 9D, 4D
2

In a Theorema computational session we get

ComputationalSession@D
Use@XTheory@"Binom4"D\D

Binom4BZ+++++++++++++++++++

, Z+++++++++F �� AbsoluteTiming

EndComputationalSession@D
94.8906250, HZ+L+=

Using the compiled version of the algorithms we are much faster:

Java|ComputeBBinom4BZ+++++++++++++++++++

, Z+++++++++FF �� AbsoluteTiming

90.0468750, HZ+L+=

In this example the execution is around 100 times faster on the Java side than in a computational session

of Theorema. Table 4.1 shows further time measurements with the function Binom4. The first column

of this table states the computation task, and the second and third column state the numbers of seconds

needed for the execution of the corresponding original Theorema code and the compiled one, respec-

tively. The fourth column gives the speed-up factor of the compiled program with respect to the original

Theorema program.

Task Theorema Compiled Theorema Speed - up Factor

Binom4@15, 7D 0.33 s 0.02 s 17

Binom4@17, 8D 1.27 s 0.02 s 64

Binom4@19, 9D 4.8 s 0.06 s 80

Binom4@21, 10D 18.39 s 0.19 s 97

Binom4@25, 12D 269.48 s 2.7 s 100

Table 4.1: Time Measurements of Binom4

4 Translation of Abstract Data Types 35

5 Translation of Sequence Variables

Sequence variables, which are variables for which an arbitrary finite number (including zero) of terms

can be substituted, add expressiveness and elegance to the Theorema language. For example, all of the

following terms match the pattern Xm, m\: X3\, X3, a\, X3, a, a, b\, X5, 3, X2, 3\\. However, the empty

tuple X\ does not match Xm, m\. Together with pattern matching, sequence variables turn out to be

extremely useful in practice and lead to well structured and well readable programs in predicate logic.

The problem of translating sequence variables from Theorema to Java is that such variables are not

supported by the Java language. Therefore, we had to come up with a mechanism which imitates

sequence variables on the Java side. This chapter is about this mechanism and how the actual translation

works. Please note that, although sequence variables with all conceivable flexibility are fully supported

by the Theorema language, only a certain type of patterns is supported by the current version of the

Theorema-Java Compiler, namely only patterns with one sequence variable at the very end of the pattern.

For example, the compiler is able to translate the pattern Xm, m\, but it does not support the pattern

Xm, m\. Although, at first sight, this looks like a severe limitation of the compiler compared to the

flexible support of sequence variables in Theorema, practice shows that sequence variables are mostly

used in exactly those kinds of patterns that are supported by the compiler.

The original ideas for translating sequence variables to Java were mainly given by Bruno Buchberger

([Buch07a]).

5.1 An Example: InsertOrdered

Before describing the above mentioned mechanism and the general way sequence variables are trans-

lated, we want to show the usage of sequence variables and the corresponding Java source code in an

example, namely the algorithm InsertOrdered, which inserts an element in a sorted list such that the

list stays sorted. Here is the definition of the function InsertOrdered and the associated theory:

DefinitionB"InsertOrdered", any@x, y, y�D,
InsertOrdered@x, X\D = Xx\
InsertOrdered@x, Xy, y�\D = ; x\InsertOrdered@y, Xy�\D Ü x < y

y\InsertOrdered@x, Xy�\D Ü otherwise

F

Theory@"InsertOrderedTheory",
Definition@"InsertOrdered"DD

The first parameter of this function is the element to be inserted into the list which is given in the second

parameter. The function is defined by two rewrite rules which are distinguished by pattern matching on

the structure of the second parameter: If the list (the second parameter) is empty, the singleton tuple with

the first parameter is returned. If the list has at least one element, two cases are distinguished depending

on the relative order of the first parameter and the first element of the list.

Let us look at two computations in Theorema (we have to add the packages for tuples and, because of

the case distinction, for connectives to our knowledge base) :

5 Translation of Sequence Variables 36

Compute@InsertOrdered@13, X\D, using ® XBuilt|in@"Tuples"D,
Built|in@"Connectives"D, Theory@"InsertOrderedTheory"D\D

X13\

Compute@InsertOrdered@13, X1, 6, 9, 14, 20, 99\D,
using ® XBuilt|in@"Tuples"D,
Built|in@"Connectives"D, Theory@"InsertOrderedTheory"D\D

X1, 6, 9, 13, 14, 20, 99\

To compile this Theorema theory to Java, we have to enter

Java|Theory2Java@Theory@"InsertOrderedTheory"DD
The Java code of the function InsertOrdered looks like this:

public static Data insertOrderedHData _param1,Data _param2L8
if HHBI_Tuple.IsTupleH_param2L&&HHHTupleL_param2L.sizeHL�0LLL8

return new TupleHnew Data@D8_param1<L;<��if
if HHBI_Tuple.IsTupleH_param2L&&HHHTupleL_param2L.sizeHL³1LLL8

if HRationals.lessH_param1,_param2.argH1LLL8
return BI_Tuple.prependH_param1,HTupleLinsertOrderedH_param2.argH1L,
BI_Tuple.createTupleHnew Data@D8

BI_Tuple.restAsSequenceHHTupleL_param2L<LLL;<��if
return BI_Tuple.prependH_param2.argH1L,HTupleLinsertOrderedH_param1,

BI_Tuple.createTupleHnew Data@D8
BI_Tuple.restAsSequenceHHTupleL_param2L<LLL;<��if

return null;<��insertOrdered
Please note the following features of this code:

è The first if-clause matches, if the second parameter is an empty tuple. This clause corresponds

precisely to the first rewrite rule of the Theorema definition of the function:

InsertOrdered@x, X\D = Xx\
è The second if-clause matches, if the second parameter is a tuple (BI_Tuple.Is-

Tuple(_param2)) with at least one element (((Tuple)_param2).size()³1). This is

exactly what the left hand side of the second rewrite rule of the Theorema definition of the

function tells us:

5 Translation of Sequence Variables 37

è

The second if-clause matches, if the second parameter is a tuple (BI_Tuple.Is-

Tuple(_param2)) with at least one element (((Tuple)_param2).size()³1). This is

exactly what the left hand side of the second rewrite rule of the Theorema definition of the

function tells us:

InsertOrdered@x, Xy, y�\D = ; x\InsertOrdered@y, Xy�\D Ü x < y

y\InsertOrdered@x, Xy�\D Ü otherwise

è The inner if-clause uses the function less of the class Rationals. The Theorema predicate

< is automatically translated in this way because the default domain for < is the domain of

rational numbers, which is implemented in the Java class Rationals (see Section 9.1).

è The class BI_Tuple provides the functions restAsSequence, which extracts all but the

last elements of a tuple, and createTuple, which forms a tuple out of an array of Data

elements. Used together in the way shown in the example code above, they provide a way of

expressing sequence variables in Java.

We can now load the theory "InsertOrderedTheory":

Java|UseTheories@8"InsertOrderedTheory"<D
and then use the compiled code for computations:

Java|Compute@InsertOrdered@13, X\DD
X13\

Java|Compute@InsertOrdered@13, X1, 6, 9, 14, 20, 99\DD
X1, 6, 9, 13, 14, 20, 99\

5.2 General Translation

The translation of sequence variables into an equivalent mechanism in Java needs handling in all three

stages of the general flow of translation (see Chapter 3). The intermediate language (see also Chapter 3),

originally design by Tudor Jebelean, had to be extended by the author to also cope with sequence

variables. Additionally, in the second step of the flow special rules have to be applied to handle these

extensions correctly. And furthermore, the Java-sided framework of the Theorema-Java Compiler

provides auxiliary methods to deal with these sequence-imitating structures.

5.2.1 Modifications of the Intermediate Language

The procedure of pattern matching elimination and the associated intermediate language (see Section

3.1) did originally not support sequence variables. The author added this functionality such that sequence

variables are now conveniently translated into the intermediate language and, therefore, ready for being

processed further.

A typical definition of a Theorema function (or predicate) which uses a sequence variable looks like

this: f@Xx1, ¼, xn, s
�\D = e. (Please note again that this is the only way sequence variables are

supported by the current version of the Theorema-Java Compiler, namely a single sequence variable at

the very end of the pattern; see the beginning of this chapter.) xi (for 1 £ i £ nL is either a constant

symbol, either a normal (i.e., non sequence) variable, or a nested expression of the form D@¼D for some

constructor D. The expression e is the body of f and is defined in terms of xi (for 1 £ i £ nL and s�. The

function f coded in the intermediate language looks like this:

5 Translation of Sequence Variables 38

A typical definition of a Theorema function (or predicate) which uses a sequence variable looks like

this: f@Xx1, ¼, xn, s
�\D = e. (Please note again that this is the only way sequence variables are

supported by the current version of the Theorema-Java Compiler, namely a single sequence variable at

the very end of the pattern; see the beginning of this chapter.) xi (for 1 £ i £ nL is either a constant

symbol, either a normal (i.e., non sequence) variable, or a nested expression of the form D@¼D for some

constructor D. The expression e is the body of f and is defined in terms of xi (for 1 £ i £ nL and s�. The

function f coded in the intermediate language looks like this:

·DeFun@·sig@"f"D, X_param1\,
·Conditional@XXH·const@ÔTupleD = ·Head@_param1DL ìH·TupleSize@_param1D ³ nL ì T, e*\\DD

The first condition in the conjunction expresses that the parameter of f has to be a tuple. The second one

says that the length of this tuple has to be at least n (because the sequence variable s� in

f@Xx1, ¼, xn, s
�\D matches sequences of any length including zero). T is obtained by recursively

applying the methods of Section 3.1 and this section to all xi (for 1 £ i £ n) and forming the conjunc-

tion. e* results from replacing s� in e by ·seq|rest@_param1, nD, expressing that s� is obtained

from _param1 by dropping the first n elements.

If the function definition has the simple shape f@Xs�\D = e, the translation of f is even easier:

·DeFun@·sig@"f"D, X_param1\,
·Conditional@XXH·const@ÔTupleD = ·Head@_param1DL, e*\\DD

e* results from replacing s� in e by ·seq@_param1D.

5.2.2 Modifications of the Compiler

In the previous chapter we introduced two new constructs of the intermediate language: •seq and

•seq–rest. We now present the necessary adaptions of the Theorema-Java Compiler in order to

handle these statements and produce the corresponding Java source code. •seq[e], for some expres-

sion e, is translated into

HHTupleLe*L.asSequenceHL
where e* is the translation of e and asSequence() is a method of the Java class Tuple, see also the

next section. ·seq|rest@_param1, nD, for some expression e and some integer n, is translated into

BI_Tuple.restAsSequenceHHTupleLe*,nL

where e* is the translation of e and restAsSequence is a method of the Java class BI_Tuple, see

also the next section.

Additionally to these two adaption, the compiler has now to distinguish two cases: First, a tuple

(given in its intermediate language representation with ti being expressions)

5 Translation of Sequence Variables 39

·Expr@·const@ÔTupleD, ÔTuple@t1, ¼, tnDD
which is free of •seq and •seq–rest is translated into

new TupleInew Data@D9t1*,¼ ,tn
*=M

where ti* is the translation of ti (for 1 £ i £ n). Secondly, if a tuple is not free of •seq and •seq–rest,

it is translated into

BI_Tuple.createTupleInew Data@D9t1*,¼ ,tn
*=M

where again ti* is the translation of ti (for 1 £ i £ n).

5.2.3 Modifications of the Java Framework

As already indicated in the previous chapter, the framework of the Theorema-Java Compiler provides

three methods for supporting sequence variables. The first one is asSequence() of the class Tuple:

public Sequence asSequenceHL8
return new SequenceHjlsL;<��asSequence

jls is a global Data array which holds all the entries of the tuple. So, this method simply encapsulates

the data of the tuple in a Sequence object. The second method is restAsSequence defined in the

class BI_Tuple as

static public Sequence restAsSequenceHTuple t,int nL8
Data@D s = new Data@t.sizeHL-nD;
for Hint i=n;i<t.sizeHL;i++L s@i-nD=t.argHi+1L;

return new SequenceHsL;<��restAsSequence
It encapsulates the entries of t starting with the n+1st entry in a Sequence object. Finally, the method

createTuple, which is also defined in the class BI_Tuple, does the real work:

5 Translation of Sequence Variables 40

static public Tuple createTupleHData@D jlsL8
ArrayList<Data> al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
forHint i=0;i<jls.length;i++L8

if Hjls@iD instanceof SequenceL8
forHint j=0;j<HHSequenceLjls@iDL.sizeHL;j++L

al.addHHHSequenceLjls@iDL.argHj+1LL;<��if
else

al.addHjls@iDL;<��for
ts=al.toArrayHtsL;
return new TupleHtsL;<��createTuple

This method takes an array of Data objects and creates a new tuple with the entries of the array, only

that entries of sequences are flattened. Let us have a look at the following example code:

Sequence s = new SequenceHnew Data@D8BI_Integer.valueOfH18L,BI_Integer.valueOfH7L<L;
createTupleHnew Data@D8s,BI_Integer.valueOfH79L<L

An instance s of the class Sequence is declared having the two entries

BI_Integer.valueOf(18) and BI_Integer.valueOf(7). Then, the method

BI_Tuple.createTuple is called and a Data array containing s and

BI_Integer.valueOf(79) is passed to it. The return value of this call is a tuple of length three

having the entries BI_Integer.valueOf(18),

BI_Integer.valueOf(7), and BI_Integer.valueOf(79). So, the sequence s was flattened,

and the element BI_Integer.valueOf(79) was appended.

5.3 Time Measurements

Extending the very first example of this part of the thesis (see Section 2.4), we will now implement the

well known mergesort algorithm in Theorema, compile it to Java, and compare the runtime of some

examples in both variants. For this, we need the following three functions:

è Merge: It takes two sorted lists of integers and merges them such that the resulting list is again

sorted. For instance, Merge[X1,3,5\,X2,4\] returns X1,2,3,4,5\.

è SplitList: It takes one list, splits it into two halves, and returns a list containing these

halves. For instance, SplitList[X1,2,3,4,5\] returns XX1,2\,X3,4,5\\.

è MergeSort: This function implements the mergesort algorithm. For instance,

MergeSort[X18,7,79,19\] returns X7,18,19,79\.

5 Translation of Sequence Variables 41

è

MergeSort: This function implements the mergesort algorithm. For instance,

MergeSort[X18,7,79,19\] returns X7,18,19,79\.

DefinitionB"Merge", any@x, x�, y, y�D,
Merge@Xx�\, X\D = Xx�\
Merge@X\, Xy�\D = Xy�\
Merge@Xx, x�\, Xy, y�\D = ; x\ Merge@Xx�\, Xy, y�\D Ü x < y

y\ Merge@Xx, x�\, Xy�\D Ü otherwise

F

DefinitionB"SplitList", any@xD,
SplitList@xD =

whereBn = x¤,
[[xi È

i=1,¼,n�2_, [xi È
i=n�2+1,¼,n

__ Ü 2 ý n

[[xi È
i=1,¼,Hn-1L�2_, [xi È

i=Hn+1L�2,¼,n

__ Ü otherwise
FF

DefinitionB"MergeSort", any@xD,
MergeSort@Xx\D = Xx\
MergeSort@xD = where@split = SplitList@xD,
Merge@MergeSort@split1D, MergeSort@split2DDDF

TheoryB"MergeSortTheory",
Definition@"Merge"D

Definition@"SplitList"D
Definition@"MergeSort"DF

For the computations below we use the following knowledge base:

Use@XBuilt|in@"Tuples"D, Built|in@"Numbers"D,
Built|in@"Quantifiers"D, Built|in@"Connectives"D\D

We can now check the examples from above:

Compute@Merge@X1, 3, 5\, X2, 4\D, using ® XTheory@"MergeSortTheory"D\D
X1, 2, 3, 4, 5\

Compute@SplitList@X1, 2, 3, 4, 5\D, using ® XTheory@"MergeSortTheory"D\D
XX1, 2\, X3, 4, 5\\

Compute@MergeSort@X18, 7, 79, 19\D, using ® XTheory@"MergeSortTheory"D\D
X7, 18, 19, 79\

We may compile the theory "MergeSortTheory" to Java by

5 Translation of Sequence Variables 42

We may compile the theory "MergeSortTheory" to Java by

Java|Theory2Java@Theory@"MergeSortTheory"DD
and also load it:

Java|UseTheories@8"MergeSortTheory"<D
Let us sort a list of length 100 in a Theorema computational session:

ComputationalSession@D
Use@XTheory@"MergeSortTheory"D\D
MergeSort@X183, 424, 411, 78, 313, 450, 248, 181, 347, 333, 125, 254, 28,

111, 450, 32, 480, 43, 43, 130, 302, 376, 299, 455, 263, 478, 257, 121,

344, 467, 280, 286, 230, 156, 154, 411, 356, 261, 433, 85, 160, 74, 281,

130, 398, 106, 494, 205, 403, 75, 430, 403, 490, 370, 170, 211, 422, 423,

336, 391, 374, 425, 414, 311, 241, 18, 333, 500, 15, 247, 108, 207, 466,

57, 252, 131, 368, 228, 444, 89, 181, 191, 2, 86, 472, 117, 305, 429, 31,

189, 176, 272, 195, 253, 418, 253, 248, 124, 412, 63\D �� AbsoluteTiming

EndComputationalSession@D
80.4062500, X2, 15, 18, 28, 31, 32, 43, 43, 57, 63, 74, 75, 78, 85, 86, 89,

106, 108, 111, 117, 121, 124, 125, 130, 130, 131, 154, 156, 160, 170,

176, 181, 181, 183, 189, 191, 195, 205, 207, 211, 228, 230, 241, 247,

248, 248, 252, 253, 253, 254, 257, 261, 263, 272, 280, 281, 286, 299,

302, 305, 311, 313, 333, 333, 336, 344, 347, 356, 368, 370, 374, 376,

391, 398, 403, 403, 411, 411, 412, 414, 418, 422, 423, 424, 425, 429,

430, 433, 444, 450, 450, 455, 466, 467, 472, 478, 480, 490, 494, 500\<
The same computation on the Java side is achieved by

Java|Compute@
MergeSort@X183, 424, 411, 78, 313, 450, 248, 181, 347, 333, 125, 254, 28,

111, 450, 32, 480, 43, 43, 130, 302, 376, 299, 455, 263, 478, 257, 121,

344, 467, 280, 286, 230, 156, 154, 411, 356, 261, 433, 85, 160, 74, 281,

130, 398, 106, 494, 205, 403, 75, 430, 403, 490, 370, 170, 211, 422, 423,

336, 391, 374, 425, 414, 311, 241, 18, 333, 500, 15, 247, 108, 207, 466,

57, 252, 131, 368, 228, 444, 89, 181, 191, 2, 86, 472, 117, 305, 429, 31,

189, 176, 272, 195, 253, 418, 253, 248, 124, 412, 63\DD �� AbsoluteTiming

80.0156250, X2, 15, 18, 28, 31, 32, 43, 43, 57, 63, 74, 75, 78, 85, 86, 89,

106, 108, 111, 117, 121, 124, 125, 130, 130, 131, 154, 156, 160, 170,

176, 181, 181, 183, 189, 191, 195, 205, 207, 211, 228, 230, 241, 247,

248, 248, 252, 253, 253, 254, 257, 261, 263, 272, 280, 281, 286, 299,

302, 305, 311, 313, 333, 333, 336, 344, 347, 356, 368, 370, 374, 376,

391, 398, 403, 403, 411, 411, 412, 414, 418, 422, 423, 424, 425, 429,

430, 433, 444, 450, 450, 455, 466, 467, 472, 478, 480, 490, 494, 500\<
In this quite small example the execution is around 25 times faster on the Java side than in a computa-

tional session of Theorema. Table 5.1 shows further time measurements with the function MergeSort.

Task Theorema Compiled Theorema Speed - up Factor

MergeSort@100 elementsD 0.41 s 0.02 s 21

MergeSort@200 elementsD 1.48 s 0.02 s 74

MergeSort@300 elementsD 3.3 s 0.03 s 110

MergeSort@500 elementsD 10.7 s 0.06 s 178

MergeSort@1000 elementsD 62.53 s 0.19 s 329

5 Translation of Sequence Variables 43

Task Theorema Compiled Theorema Speed - up Factor

MergeSort@100 elementsD 0.41 s 0.02 s 21

MergeSort@200 elementsD 1.48 s 0.02 s 74

MergeSort@300 elementsD 3.3 s 0.03 s 110

MergeSort@500 elementsD 10.7 s 0.06 s 178

MergeSort@1000 elementsD 62.53 s 0.19 s 329

Table 5.1: Time Measurements of MergeSort

5 Translation of Sequence Variables 44

6 Translation of Higher Order Functions

The Theorema-Java Compiler is able to translate functions which take one or more functions as input.

Although Java does not directly support first-class functions, it is possible to overcome this limitation by

encapsulating methods in objects and then pass these objects. For this mechanism to work, it is necessary

that the encapsulating class is derived from a certain base class or that it implements a certain interface.

In the current version of the Theorema-Java Compiler the former variant is implemented, namely all data

that is passed to a compiled method is of type Data, which implements the method call, whose

signature is Data call(Data[]).

6.1 An Example: DoubleMap

Before explaining the details of the translation of higher order functions in the above stated way, we want

to give a simple example to explain the basic ideas of this translation step.

The function DoubleMap takes as arguments a function and a list, applies the function twice to each

element of this list, and returns the resulting list. For testing DoubleMap, we additionally implement the

functions PlusOne and MapAddTwo, and, finally, we pack everything together into the theory "Double-

MapTheory".

Definition@"PlusOne", any@xD,
PlusOne@xD = x + 1D
DefinitionB"DoubleMap", any@x, x�, fD,

DoubleMap@f, X\D = X\
DoubleMap@f, Xx, x�\D = f@f@xDD \DoubleMap@f, Xx�\DF

Definition@"MapAddTwo", any@xD,
MapAddTwo@xD = DoubleMap@PlusOne, xDD

TheoryB"MapAddTwoTheory",
Definition@"PlusOne"D
Definition@"DoubleMap"D
Definition@"MapAddTwo"DF

DoubleMap is a higher order function, which treats its first argument as a function and applies it to the

elements of the list that comes as second argument. It is very similar to the map function which is very

common in functional programming languages and also implemented in Mathematica as Map.

The following computation adds two times 1 to every element of the list X1, 2, 3, 4, 5\ by

applying the function MapAddTwo to this list:

6 Translation of Higher Order Functions 45

Compute@MapAddTwo@X1, 2, 3, 4, 5\D, using ®XBuilt|in@"Tuples"D, Built|in@"Numbers"D, Theory@"MapAddTwoTheory"D\D
X3, 4, 5, 6, 7\

In order to do the same computation on the Java side, we first compile the theory

Java|Theory2Java@Theory@"MapAddTwoTheory"DD
and then load it

Java|UseTheories@8"MapAddTwoTheory"<D
We can now use the compiled code for computations:

Java|Compute@MapAddTwo@X1, 2, 3, 4, 5\DD
X3, 4, 5, 6, 7\

The Java code of the function DoubleMap looks like this:

public static Data doubleMapHData _param1,Data _param2L8
if HHBI_Tuple.IsTupleH_param2L&&HHHTupleL_param2L.sizeHL�0LLL8

return new TupleHnew Data@D8<L;<��if
if HHBI_Tuple.IsTupleH_param2L&&HHHTupleL_param2L.sizeHL³1LLL8

return BI_Tuple.prependH_param1.callHnew Data@D8_param1.callH
new Data@D8_param2.argH1L<L<L,HTupleLdoubleMapH_param1,BI_Tuple.

createTupleHnew Data@D8BI_Tuple.restAsSequenceHHTupleL_param2,1L<LLL;<��if
return null;<��doubleMap

So, the first parameter _param1 is used as a function by calling its call method. To make this invoca-

tion work, we have to pass an appropriate object as first parameter. Let us have a look at how this is done

in the method mapAddTwo:

public static Data mapAddTwoHData _param1L8
return doubleMapHnew PlusOneFunctionHL,_param1L;<��mapAddTwo

mapAddTwo calls the method doubleMap and passes to it an instance of the class

PlusOneFunction as first parameter. This class is automatically created by the compiler and is

implemented like this:

6 Translation of Higher Order Functions 46

mapAddTwo calls the method doubleMap and passes to it an instance of the class

PlusOneFunction as first parameter. This class is automatically created by the compiler and is

implemented like this:

public class PlusOneFunction extends Function8
ExtendedData _param1=null;

public PlusOneFunctionHL8<��PlusOneFunction
public PlusOneFunctionHExtendedData _param1L8

this._param1=_param1;<��PlusOneFunction
public Data callHData@D argsL8

if Hargs.length�1L8
return Algorithms.plusOneHargs@0DL;<��if

return Algorithms.plusOneH_param1L;<��call<��class PlusOneFunction

It basically contains the function call, which takes an array of Data and calls the method

Algorithms.plusOne accordingly.

6.2 General Translation

The general translation of higher order functions and predicates is based on two ingredients: the creation

of an encapsulating function class (like PlusOneFunction in the previous example), which is created

by the Theorema-Java Compiler automatically for every function and every predicate of a theory, and

the invocation of its call method.

Let us have a look at a simple example that is as general as possible and as complicated as necessary.

The function f is defined as f[g,x]=g[x], the function z is defined as z[x]=e (where e is an

expression defined in terms of x), and the function a is defined as a[x]=f[z,x]. The function f

coded in the intermediate language looks like this:

X·DeFun@·sig@"f"D, X_param1, _param2\,
·Conditional@XX@ ß D, ·Expr@_param1, X_param2\D\\DD\

The parameter _param1 in ·Expr@_param1, X_param2\D is used as a function, and, hence, the

corresponding Java code of f is:

6 Translation of Higher Order Functions 47

public static Data fHData _param1,Data _param2L8
return _param1.callHnew Data@D8_param2<L;<��f

So, the function f takes two parameters, invokes the call method of the first, and passes to it the

second as an array with one entry. For making this mechanism work, the invoking method has to pass to

f an instance of a subclass of the class Function, which is abstract and directly derived from Data.

To see how this works, let us have a look at the function a in intermediate language:

·DeFun@·sig@"a"D, X_param1\,
·Conditional@XX@ ß D, ·Expr@·const@fD, X·const@zD, _param1\D\\DD

The corresponding Java code is:

public static Data aHData _param1L8
return fHnew zFunctionHL,_param1L;<��a

The function a calls f and passes a new instance of zFunction, which is automatically created by the

Theorema-Java Compiler. Here is its Java code:

public class zFunction extends Function8
ExtendedData _param1=null;

public zFunctionHL8<��zFunction
public zFunctionHExtendedData _param1L8

this._param1=_param1;<��zFunction
public Data callHData@D argsL8

if Hargs.length�1L8
return Algorithms.zHargs@0DL;<��if

return Algorithms.zH_param1L;<��call<��class zFunction

Hence, when f is called (by the method a), it invokes the call method of its first argument, which is

the newly created instance of the class zFunction, and this method checks the number of arguments

and eventually calls the method Algorithms.z.

6 Translation of Higher Order Functions 48

Hence, when f is called (by the method a), it invokes the call method of its first argument, which is

the newly created instance of the class zFunction, and this method checks the number of arguments

and eventually calls the method Algorithms.z.

6.3 Time Measurements

In this section we want to extend the mergesort example from Section 5.3 even further by implementing

the algorithm as a higher order function. For this, the function MergeSort gets as second parameter a

predicate defining the sorting ordering. This predicate is then passed through to Merge, which uses it to

actually merge the two lists accordingly. Additionally, we define the predicates LessFunc and

GreaterFunc, which implement the predicates < (less than) and > (greater than), respectively. The

functions MergeSortIncreasing and MergeSortDecreasing finally put together the higher

order function MergeSort and these ordering predicates.

DefinitionB"OrderFunctions", any@x, yD,
LessFunc@x, yD � Hx < yL
GreaterFunc@x, yD � Hx > yLF

DefinitionB"Merge", any@x, x�, y, y�, FD,
Merge@Xx�\, X\, FD = Xx�\
Merge@X\, Xy�\, FD = Xy�\
Merge@Xx, x�\, Xy, y�\, FD = ; x\ Merge@Xx�\, Xy, y�\, FD Ü F@x, yD

y\ Merge@Xx, x�\, Xy�\, FD Ü otherwise

F

DefinitionB"MergeSort", any@x, FD,
MergeSort@Xx\, FD = Xx\
MergeSort@x, FD = where@split = SplitList@xD,
Merge@MergeSort@split1, FD, MergeSort@split2, FD, FDD

MergeSortAscending@xD = MergeSort@x, LessFuncD
MergeSortDeccending@xD = MergeSort@x, GreaterFuncD

F

TheoryB"HigherOrderMergeSortTheory",
Definition@"OrderFunctions"D

Definition@"Merge"D
Definition@"SplitList"D
Definition@"MergeSort"D

F

For the computations below we use the following knowledge base:

Use@XBuilt|in@"Tuples"D, Built|in@"Numbers"D,
Built|in@"Quantifiers"D, Built|in@"Connectives"D\D

If we want, for instance, to sort the list X99, 12, 5, 34, 9, 1, 18, 7\ in ascending order, we

compute

6 Translation of Higher Order Functions 49

Compute@
MergeSortAscending@X183, 424, 411, 78, 313, 450, 248, 181, 347, 333, 125,

254, 28, 111, 450, 32, 480, 43, 43, 130, 302, 376, 299, 455, 263, 478,

257, 121, 344, 467, 280, 286, 230, 156, 154, 411, 356, 261, 433, 85, 160,

74, 281, 130, 398, 106, 494, 205, 403, 75, 430, 403, 490, 370, 170, 211,

422, 423, 336, 391, 374, 425, 414, 311, 241, 18, 333, 500, 15, 247, 108,

207, 466, 57, 252, 131, 368, 228, 444, 89, 181, 191, 2, 86, 472, 117,

305, 429, 31, 189, 176, 272, 195, 253, 418, 253, 248, 124, 412, 63\D,
using ® XTheory@"HigherOrderMergeSortTheory"D\D �� AbsoluteTiming

80.5312500, X2, 15, 18, 28, 31, 32, 43, 43, 57, 63, 74, 75, 78, 85, 86, 89,

106, 108, 111, 117, 121, 124, 125, 130, 130, 131, 154, 156, 160, 170,

176, 181, 181, 183, 189, 191, 195, 205, 207, 211, 228, 230, 241, 247,

248, 248, 252, 253, 253, 254, 257, 261, 263, 272, 280, 281, 286, 299,

302, 305, 311, 313, 333, 333, 336, 344, 347, 356, 368, 370, 374, 376,

391, 398, 403, 403, 411, 411, 412, 414, 418, 422, 423, 424, 425, 429,

430, 433, 444, 450, 450, 455, 466, 467, 472, 478, 480, 490, 494, 500\<
To sort the same list in descending order, we call

Compute@MergeSortDeccending@X183, 424, 411, 78, 313, 450, 248, 181, 347, 333, 125, 254, 28, 111, 450,

32, 480, 43, 43, 130, 302, 376, 299, 455, 263, 478, 257, 121, 344,

467, 280, 286, 230, 156, 154, 411, 356, 261, 433, 85, 160, 74, 281,

130, 398, 106, 494, 205, 403, 75, 430, 403, 490, 370, 170, 211, 422,

423, 336, 391, 374, 425, 414, 311, 241, 18, 333, 500, 15, 247, 108,

207, 466, 57, 252, 131, 368, 228, 444, 89, 181, 191, 2, 86, 472, 117,

305, 429, 31, 189, 176, 272, 195, 253, 418, 253, 248, 124, 412, 63\D,
using ® XTheory@"HigherOrderMergeSortTheory"D\D �� AbsoluteTiming

80.5312500, X500, 494, 490, 480, 478, 472, 467, 466, 455, 450, 450, 444, 433,

430, 429, 425, 424, 423, 422, 418, 414, 412, 411, 411, 403, 403, 398,

391, 376, 374, 370, 368, 356, 347, 344, 336, 333, 333, 313, 311, 305,

302, 299, 286, 281, 280, 272, 263, 261, 257, 254, 253, 253, 252, 248,

248, 247, 241, 230, 228, 211, 207, 205, 195, 191, 189, 183, 181, 181,

176, 170, 160, 156, 154, 131, 130, 130, 125, 124, 121, 117, 111, 108,

106, 89, 86, 85, 78, 75, 74, 63, 57, 43, 43, 32, 31, 28, 18, 15, 2\<
Let us now compile and load the theory "HigherOrderMergeSortTheory" and make the same calculations

on the Java side:

Java|Theory2Java@Theory@"HigherOrderMergeSortTheory"DD
Java|UseTheories@8"HigherOrderMergeSortTheory"<D

6 Translation of Higher Order Functions 50

Java|Compute@
MergeSortAscending@X183, 424, 411, 78, 313, 450, 248, 181, 347, 333,

125, 254, 28, 111, 450, 32, 480, 43, 43, 130, 302, 376, 299, 455,

263, 478, 257, 121, 344, 467, 280, 286, 230, 156, 154, 411, 356,

261, 433, 85, 160, 74, 281, 130, 398, 106, 494, 205, 403, 75, 430,

403, 490, 370, 170, 211, 422, 423, 336, 391, 374, 425, 414, 311,

241, 18, 333, 500, 15, 247, 108, 207, 466, 57, 252, 131, 368,

228, 444, 89, 181, 191, 2, 86, 472, 117, 305, 429, 31, 189, 176,

272, 195, 253, 418, 253, 248, 124, 412, 63\DD �� AbsoluteTiming

80.0156250, X2, 15, 18, 28, 31, 32, 43, 43, 57, 63, 74, 75, 78, 85, 86, 89,

106, 108, 111, 117, 121, 124, 125, 130, 130, 131, 154, 156, 160, 170,

176, 181, 181, 183, 189, 191, 195, 205, 207, 211, 228, 230, 241, 247,

248, 248, 252, 253, 253, 254, 257, 261, 263, 272, 280, 281, 286, 299,

302, 305, 311, 313, 333, 333, 336, 344, 347, 356, 368, 370, 374, 376,

391, 398, 403, 403, 411, 411, 412, 414, 418, 422, 423, 424, 425, 429,

430, 433, 444, 450, 450, 455, 466, 467, 472, 478, 480, 490, 494, 500\<
In this quite small example the execution is around 30 times faster on the Java side than in a computa-

tional session of Theorema. Table 6.1 shows further time measurements with the function

MergeSortAscending.

Task Theorema Compiled Theorema Speed - up Factor

MergeSortAscending@100 elementsD 0.53 s 0.02 s 27

MergeSortAscending@200 elementsD 1.53 s 0.03 s 51

MergeSortAscending@300 elementsD 3.4 s 0.03 s 113

MergeSortAscending@500 elementsD 10.7 s 0.06 s 178

MergeSortAscending@1000 elementsD 62.4 s 0.19 s 328

Table 6.1: Time Measurements of MergeSortAscending

6 Translation of Higher Order Functions 51

7 Translation of Functors

In this thesis, a domain is a carrier together with operations (functions and predicates) on this carrier, and

a functor is a function that generates a new domain from given ones. Functors provide an elegant

approach to generic programming and were introduced in the Theorema system by the work of Bruno

Buchberger ([Tma00]). For example, using functors, the code for the operations in the domain of polyno-

mials over a coefficient domain needs to be written only once, independent of the specific coefficient

domain. By iteration, the application of (algorithmic) functors to domains generated by (algorithmic)

functors (starting from some initial, algorithmic domains) may generate a wide spectrum of (algorithmic)

domains with only very little code for the few functors involved. An introduction to functors, their

power, and their usage in Theorema (including a lot of examples) is given in [Buch03] and [Buch08].

The Theorema-Java Compiler is able to translate domains which are defined by the application of

functors, and, for that, provides the command Java–DeclareDomain. Additionally, the framework

of the compiler offers three basic domains (see Section 10.3.2): the class Integers representing the

domain of integers, the class Rationals representing the domain of rational numbers, and the class

IntegersMod5 representing the domain of integers modulo five.

In this chapter of the thesis, we present first an introductory example and then explain the general

translation of Theorema definitions based on functors and domains. In Chapter 11, we will present a

whole case study on Gröbner Bases, where we make extensive use of functors and domains.

7.1 An Example: CartesianProduct

The functor CartesianProduct takes a domain D and generates the domain D�D, the cartesian

product of D and D. Further details on this functor and a detailed description of the syntax and semantic

can be found in [Buch03].

DefinitionB"Cartesian Product", any@DD,
CartesianProduct@DD = FunctorBN, any@X, x1, x2, y1, y2D,

s = X\
Î
N

@XD � Jis|tuple@XD í H X¤ = 2L í Î
D

@X1D í Î
D

@X2DN
0
N

= [0
D
, 0

D
_

Xx1, x2\ >
N

Xy1, y2\ � KKx1 >
D
y1O í Kx2 >

D
y2OO

Xx1, x2\ +
N

Xy1, y2\ = Zx1 +
D
y1, x2 +

D
y2^

FF
Definition@"CP Domains",

CP|Int = CartesianProduct@NDD
Given a domain D with the decision predicate Î

D
 (i.e., Î

D
@XD yields true, if and only if X is an element

of the carrier of D), the binary predicate >
D

, and the binary function +
D

, CartesianProduct[D]

returns a domain, let us call it N, with two predicates, one function, and a constant:

7 Translation of Functors 52

Given a domain D with the decision predicate Î
D

 (i.e., Î
D

@XD yields true, if and only if X is an element

of the carrier of D), the binary predicate >
D

, and the binary function +
D

, CartesianProduct[D]

returns a domain, let us call it N, with two predicates, one function, and a constant:

è The unary decision predicate of N is defined as

Î
N

@XD � Jis|tuple@XD í H X¤ = 2L í Î
D

@X1D í Î
D

@X2DN
That is, an arbitrary X is element of the carrier of the new domain N, if and only if X is a tuple, it is of

length two, and its two components belong to the carrier of D.

è The binary predicate >
N

 is defined component-wise in terms of >
D

:

Xx1, x2\ >
N

Xy1, y2\ � KKx1 >
D
y1O í Kx2 >

D
y2OO

è The constant 0 of N is defined as

0
N

= [0
D
, 0

D
_

è The binary operation +
N

 is defined component-wise in terms of +
D

:

Xx1, x2\ +
N

Xy1, y2\ = Zx1 +
D
y1, x2 +

D
y2^

Additionally, the domain CP–Int is defined as CartesianProduct[N], i.e., CP–Int is the

cartesian product N�N.

 We want now to do some computations in this domain in both Theorema and Java. For this, we use

the following knowledge base:

Use@XBuilt|in@"Tuples"D, Built|in@"Connectives"D,
Built|in@"Numbers"D, Built|in@"Number Domains"D, Built|in@"Sets"D,
Definition@"Cartesian Product"D, Definition@"CP Domains"D\D

The following computation determines whether the tuple X18,7\ is an element of the carrier of

CP–Int:

ComputeB Î
CP|Int

@X18, 7\DF
True

It returns True, because both 18 and 7 are natural numbers. To add X1, 2\ and X3, 4\ in the

domain CP–Int, we may execute:

7 Translation of Functors 53

ComputeBX1, 2\ +
CP|Int

X3, 4\F
X4, 6\

Finally, we want to check if X18, 7\ > X7, 9\ holds in CP–Int:

ComputeBX18, 7\ >
CP|Int

X2, 9\F
False

This gives, of course, False, because 18>2 but 7<9.

Now, we want to compile the domain CP–Int to Java. For this purpose, the command Java–

DeclareDomain is provided, and a call to it has the following syntax:

Java|DeclareDomain@DomainName = FunctorName@ParametersD, DefinitionD
DomainName is the name of the domain on the Java side, FunctorName is the name of the functor which

is applied to Parameters and returns the new domain. The current version of the Theorema-Java Com-

piler supports Parameters to be a (possibly empty) sequence of domains and integers. Definition is the

Theorema definition that defines the functor FunctorName.

So, in order to create the domain CP–Int on the Java side, we have to execute:

Java|DeclareDomain@CP|Int = CartesianProduct@IntegersD,
Definition@"Cartesian Product"DD

As a result, the Java class CP_Int (see renaming of identifiers in Section 3.2) is created and compiled:

7 Translation of Functors 54

public class CP_Int implements Domain8
public static boolean elementHData _param1L8

return HHBI_Tuple.IsTupleH_param1L&&HBI_Integer.valueOfHHHContainerL_param1L.sizeHLL.
equalHBI_Integer.valueOfH2LLL&&

Integers.elementHHHTupleL_param1L.
argHHHBI_NumberLBI_Integer.valueOfH1LL.asIntHLLL&&

Integers.elementHHHTupleL_param1L.
argHHHBI_NumberLBI_Integer.valueOfH2LL.asIntHLLLLL;<��element

public static boolean greaterHData _param1,Data _param2L8
if HHBI_Tuple.IsTupleH_param1L&&HHHTupleL_param1L.sizeHL�2L&&

BI_Tuple.IsTupleH_param2L&&HHHTupleL_param2L.sizeHL�2LLL8
return HHIntegers.greaterH_param1.argH1L,_param2.argH1LL&&

Integers.greaterH_param1.argH2L,_param2.argH2LLLL;<��if
return false;<��greater

public static Data plusHData _param1,Data _param2L8
if HHBI_Tuple.IsTupleH_param1L&&HHHTupleL_param1L.sizeHL�2L&&

BI_Tuple.IsTupleH_param2L&&HHHTupleL_param2L.sizeHL�2LLL8
return new TupleHnew Data@D8Integers.plusH_param1.argH1L,_param2.argH1LL,

Integers.plusH_param1.argH2L,_param2.argH2LL<L;<��if
return null;<��plus

public static Data constantsHString _param1L8
if H_param1.equalsH"0"LL8

return new TupleHnew Data@D8Integers.constantsH"0"L,
Integers.constantsH"0"L<L;<��if

return null;<��constants
...<��class CP_Int

This Java class has the following features:

7 Translation of Functors 55

è It implements the interface Domain, which is empty and which has to be implemented by all

classes representing a domain.

è The functions of the Theorema domain are implemented as static methods since they are

associated to the domain itself rather than to an instance of it. Actually, domain classes are never

instantiated.

è The return value of methods which implement predicates is boolean, methods which imple-

ment functions return Data objects.

è The method constants gets a string and returns the corresponding constant.

7.2 General Translation

The general translation of a functor basically involves the translation techniques described in the previ-

ous chapters. However, additional particularities have to be considered:

è A functor, let us call it N for the moment, may contain three types of definitions, which are

described in the following list:

è A function definition has either the form f
N

@x1, ¼ , xnD = T or the form

f
N

@x1, ¼ , xnD := T .

è A predicate definition has either the form p
N

@x1, ¼ , xnD � F or the form

p
N

@x1, ¼ , xnD : � T .

è A constant definition has either the form C
N

= T or the form C
N

:= T .

è Every functor has to define a membership predicate Î .

è In the current version of the Theorema-Java Compiler parameters of functors may be a

(possibly empty) sequence of domains and integers.

è The command Java–DeclareDomain[DomainName =

FunctorName[Parameters], Definition] creates the domain DomainName on the

Java side, i.e., it creates one Java class which contains one static method for every function and

every predicate of the newly defined domain.

According to the original inventor and implementor of functors in Theorema, Bruno Buchberger, the

fundamental idea of Theorema's functor concept is that Theorema (as well as Mathematica) supports

general currying (see [Buch08]). Since currying is not possible in Java, we had to come up with a

different concept in order to translate Theorema functors into Java code. We achieve this compilation by

applying the following mechanism ([Buch07b]): Let us first define an exemplary functor F as

7 Translation of Functors 56

DefinitionB"F", any@DD,
F@DD = FunctorBN, any@XD,

s = X\
Î
N

@XD � true

g
N
@XD = h

D
@XD

FF
This functor takes a domain D and defines a function g in terms of D's function h. Suppose we previously

defined the domain M, we can create the domain F[M] on the Java side by executing

Java|DeclareDomain@FM = F@MD, Definition@"F"DD
For creating the corresponding Java code, the Theorema-Java Compiler translates every function call

f
D

@¼D into the Java function call M.f(…). So, the Java code of the method g in the domain FM looks

like this:

public static Data gHData _param1L8
return M.hH_param1L;<��g

Of course, this translation can equally be applied to all kinds of functions and predicates.

7.3 Time Measurements

An detailed case study of functors including time measurements in Theorema and on the Java side is

presented in Chapter 11 of this thesis.

7 Translation of Functors 57

8 Calling Compiled Algorithms

The previous chapters explained explicitly the translation of Theorema definitions into executable Java

code. After achieving this compilation, we have to come up with a way of calling the algorithms on the

Java side from within Theorema. That is, we need an interface between Mathematica and Java which

allows both instantiations of classes and calls to their methods. J/Link is the tool of our choice (see

Section 2.1). The framework of the Theorema-Java Compiler provides the following three commands,

which internally use a J/Link connection to an instance of the class JavaComputer (see Section 10.4),

to call algorithms and to control the used theories and domains during the computation:

è Java–Compute: This is the main command to call Java algorithms, which were compiled

from Theorema definitions beforehand. Java–Compute takes as its only argument a call to an

algorithm, executes this algorithm with the given parameters, and returns its result. The call in

the argument must have the same syntax as it would have in Theorema's Compute command.

è Java–UseTheories: This command is similar to Theorema's Use command. Java–

UseTheories takes a list of theory names (i.e., a list of strings) and loads the corresponding

Java classes, which, thereby, become available for the next calls to Java–Compute.

è Java–UseDomains: This command takes a list of domain names (i.e., a list of expressions)

and loads the corresponding Java classes, which, thereby, become available for the next calls to

Java–Compute.

8 Calling Compiled Algorithms 58

9 Compiler Settings

The Theorema-Java Compiler provides currently two commands to change its behavior: Java-

SetDefaultDomain and Java-SetCompilerParameter. This chapter describes these com-

mands in detail.

9.1 Java-SetDefaultDomain

The Theorema-Java Compiler allows to use operations without stating explicitly in which domain they

are to be performed. You may, for instance, evaluate 18 + 7 and assume that the operation + is per-

formed in the domain of natural numbers. The command Java-SetDefaultDomain is used to

calibrate this mechanism of automatically assigning a certain domain to an operator, and a call to it has

the following syntax:

Java|SetDefaultDomain@Operation, DomainD
Operation gives the operation name or symbol, and Domain is the name of a previously compiled (or

built-in) domain which hereby becomes the default domain of Operation. For instance, if you want to

set the default domain of the predicate £ to Q, you call

Java|SetDefaultDomain@ £ , RationalsD
8+ ® Rationals, - ® Rationals, * ® Rationals, � ® Rationals, ^ ® Rationals,

Quotient ® Integers, Mod ® Integers, < ®

Rationals, £ ® Rationals, > ® Rationals, ³ ® Rationals,

Max ® Rationals, Min ® Rationals, £ ® Rationals<

As a result, the Theorema-Java Compiler will translate every occurrence of the symbol £ into the Java

code Rationals.lessEqual(...) (where Rationals is a Java class provided by the frame-

work of the compiler).

To obtain a list of all operations and their assigned default domain, the command

Java|GetDefaultDomains@D
is provided. After the Theorema-Java Compiler is loaded, Java–GetDefaultDomains[] yields

8+ ® Rationals, - ® Rationals, * ® Rationals, � ® Rationals, ^ ® Rationals,

Quotient ® Integers, Mod ® Integers, < ® Rationals, £ ® Rationals, > ®

Rationals, ³ ® Rationals, Max ® Rationals, Min ® Rationals<
This means that Rationals (i.e., Q) is the default domain for the operations +, -, *, �, ^ and for the

predicates <, £, >, ³, Max, Min. Integers is the default domain for the operations Quotient and

Mod.

9 Compiler Settings 59

9.2 Java-SetCompilerParameter

The compiler offers the command Java-SetCompilerParameter to alter its behavior, and a call

to it has the following syntax:

Java|SetCompilerParameter@ParameterName, ValueD
ParameterName may have one of the following values:

è PARAM–AUTODETECT–TAILREC. If Value is set to true, the compiler translates tail

recursive function into iterative Java programs. The default value of this parameter is false.

è PARAM–COMPILE–SOURCE. If Value is set to false, the compiler generates Java source

files, but does not compile them to Java byte code. The default value of this parameter is true.

è PARAM–COMPILE–DEBUGINFO. If Value is set to true, the compiler uses the option "-g"

when calling the Java compiler. The default value of this parameter is false.

è PARAM–JAVACOMPUTER–DIRECTORY. Value sets the directory where the JavaCom-

puter class (see Section 10.4) is stored.

To obtain the value of a parameter, the command Java-GetCompilerParameter is provided:

Java|GetCompilerParameter@ParameterNameD
ParameterName may have the same values as given above.

9 Compiler Settings 60

10 The Framework of the Theorema-Java Compiler

10.1 The Package Structure

In the course of the development of the Theorema-Java Compiler a whole framework was created in

order to support all the upcoming requirements of the compilation. This framework basically consists of

two parts: the Theorema-Java Compiler itself, which is a Mathematica program, and a whole Java

package, which basically provides Java classes for built-in structures (e.g., tuples and sequences) and

built-in domains (e.g., rational numbers). This package and its subpackages have the following hierarchi-

cal structure:

JavaComputer

System

BasicDomains

BuiltIn

JavaComputer

User

Domains

Theories

This chapter of the thesis is about this second part of the framework, these Java classes.

The framework of the Theorema-Java Compiler provides the precompiled Java package JavaCom-

piler which includes the JavaComputer class and two major subpackages BuiltIn and

BasicDomains. All these parts are described in detail in the following sections of this chapter.

Also, the Java classes which are created during the compilation of user-defined Theorema programs

are organized in subpackages of the overall package JavaCompiler: classes which correspond to a

Theorema theory TheoryName (i.e., created by a call to Java–Theory2Java) belong to the package

JavaCompiler.User.Theories.TheoryName; classes which represent a Theorema domain

are stored in the package JavaCompiler.User.Domains.

10.2 The Package BuiltIn

The classes of the package BuiltIn are of general purpose and form the fundamental, Java-sided

framework of the Theorema-Java Compiler. Among these classes are, for instance, the superclass of all

method parameters (Data), boolean value expressing classes (BooleanData, True, False), and the

Tuple class.

10.2.1 The Class Data

This abstract class is the base class of most of the classes of the framework and, in particular, of all user-

defined abstract data types (see Chapter 4). Hence, it is also used as the type of all method parameters

and of return values. The source code of Data is given below:

10 The Framework of the Theorema-Java Compiler 61

public abstract class Data8
public Data callHData@D argsL8

return null;<��call
public abstract Data argHint nL;
public abstract boolean equalHData xL;
public abstract String toStringHL;
public abstract Expr toExprHL;<��class Data

10.2.2 The Classes BooleanData, True, and False

The class BooleanData, an abstract subclass of Data, is the return value of all methods expressing a

predicate and represents a boolean value. Its two subclasses True and False stand for the truth values

True and False, respectively. The source codes of BooleanData and True are cited below:

public abstract class BooleanData extends Data8
public boolean isTrueHL8

return false;<��isTrue
public boolean isFalseHL8

return false;<��isFalse<��BooleanData

10 The Framework of the Theorema-Java Compiler 62

public class True extends BooleanData8
public boolean isTrueHL8

return true;<��isTrue
public Data argHint nL8

return null;<��arg
public boolean equalHData xL8

if Hx instanceof BooleanDataL
return HHBooleanDataLxL.isTrueHL;

else

return false;<��equal
public String toStringHL8

return "True";<��toString
public Expr toExprHL8

return new ExprHExpr.SYMBOL,"True"L;<��toExpr<��class True

10.2.3 The Classes BI_Number, BI_Integer, and BI_Rational

The class BI_Number ("BI" stands for "built-in"), which is an abstract subclass of Data, represents an

element of a number domain with basic operations (e.g., addition, multiplication) and basic predicates

(e.g., greater than, less than). Here is its Java source code:

10 The Framework of the Theorema-Java Compiler 63

public abstract class BI_Number extends Data8
public abstract BI_Number addHBI_Number aL;
public abstract BI_Number minusHBI_Number aL;
public abstract BI_Number multiplyHBI_Number aL;
public abstract BI_Number divideHBI_Number aL;
public abstract BI_Number getZeroHL;
public abstract boolean isGreaterHBI_Number aL;
public abstract boolean isGreaterEqualHBI_Number aL;
public abstract boolean isLessHBI_Number aL;
public abstract boolean isLessEqualHBI_Number aL;
public abstract boolean isUnequalHBI_Number aL;
public abstract int asIntHL;<��BI_Number

The classes BI_Integer and BI_Rational are concrete subclasses of BI_Number and implement

BI_Number's methods accordingly. For this, BI_Integer internally uses an instance of the class

java.math.BigInteger, and BI_Rational uses a pair of such instances.

10.2.4 The Classes Container, Tuple, and Set

The class Container, an abstract subclass of Data, acts as a joint superclass of Tuple and

Sequence.

public abstract class Container extends Data8
public abstract int sizeHL;<��class Container

An instance of the class Tuple corresponds to a Theorema expression whose head is Tuple, that is, it

is a container for arbitrary many objects of type Data. Similarly, an instance of Set stands for a set in

Theorema. Below we present the source code of Tuple.

public class Tuple extends Container8
Data@D jls;

public TupleHData@D jlsL8
this.jls=jls;<��Tuple

public TupleHData@D jls,int nL8
this.jls=new Data@nD;
forHint i=0;i<n;i++L

this.jls@iD=jls@iD;<��Tuple
public Data argHint nL

10 The Framework of the Theorema-Java Compiler 64

8
if Hn-1<jls.lengthL

return jls@n-1D;
return null;<��arg

public Data argHBI_Integer biL8
return argHbi.asIntHLL;<��arg

public boolean equalHData xL8
if H!Hx instanceof TupleLL

return false;

Tuple xt=HTupleLx;
if Hxt.sizeHL¹jls.lengthL

return false;

forHint i=0;i<jls.length;i++L
if H!jls@iD.equalHxt.argHi+1LLL

return false;

return true;<��equal
public Expr toExprHL8

Expr@D es=new Expr@jls.lengthD;
forHint i=0;i<jls.length;i++L

es@iD = jls@iD.toExprHL;
return new ExprHnew ExprHExpr.SYMBOL,

String.valueOfHConstants.TRADEMARKL+"Tuple"L,esL;<��toExpr
public int sizeHL8

return jls.length;<��size
public void replaceHint n,Data jlL8

jls@n-1D=jl;<��replace
public Sequence asSequenceHL8

return new SequenceHjlsL;<��asSequence
public String toString

10 The Framework of the Theorema-Java Compiler 65

public String toStringHL8
return toExprHL.toStringHL;<��toString<��class Tuple

10.2.5 The Classes BI_Tuple and BI_Set

The class BI_Tuple contains several (static) methods for basic operations on tuples, e.g., appending,

replacing, and deleting of elements. The source code of this class is given below.

public class BI_Tuple8
static public Data replaceElementHTuple a1,BI_Number a2,Data a3L8

int size = HHTupleLa1L.sizeHL;
int n = a2.asIntHL;
Data@D mos = new Data@sizeD;
forHint i=0;i<size;i++L

if Hi�n-1L
mos@iD=a3;

else

mos@iD=HHTupleLa1L.argHi+1L;
return new TupleHmosL;<��replaceElement

static public boolean IsTupleHData a1L8
return Ha1 instanceof TupleL;<��IsTuple

static public Tuple appendHTuple t,Data aL8
Data@D result=new Data@t.sizeHL+1D;
forHint i=0;i<t.sizeHL;i++L

result@iD=t.argHi+1L;
result@t.sizeHLD=a;

return new TupleHresultL;<��append
static public Tuple prependHData a,Tuple tL8

Data@D result = new Data@t.sizeHL+1D;
result@0D = a;

forHint i=0;i<t.sizeHL;i++L
result@i+1D = t.argHi+1L;

;

10 The Framework of the Theorema-Java Compiler 66

return new TupleHresultL;<��prepend
static public Tuple appendHTuple t,Tuple taL8

int t_size = t.sizeHL;
int ta_size = ta.sizeHL;
Data@D result = new Data@t_size+ta_sizeD;
forHint i=0;i<t_size;i++L

result@iD=t.argHi+1L;
forHint i=0;i<ta_size;i++L

result@t_size+iD=ta.argHi+1L;
return new TupleHresultL;<��append

static public Tuple deleteElementHTuple t,BI_Number posL8
Data@D result = new Data@t.sizeHL-1D;
int pv = pos.asIntHL;
forHint i=0;i<pv-1;i++L

result@iD=t.argHi+1L;
forHint i=pv;i<t.sizeHL;i++L

result@i-1D=t.argHi+1L;
return new TupleHresultL;<��deleteElement

static public Tuple deleteFirstHTuple tL8
Data@D result = new Data@t.sizeHL-1D;
forHint i=1;i<t.sizeHL;i++L

result@i-1D=t.argHi+1L;
return new TupleHresultL;<��deleteFirst

static public Tuple insertElementHTuple t,BI_Number pos,Data aL8
Data@D result = new Data@t.sizeHL+1D;
int pv = pos.asIntHL;
forHint i=0;i<pv-1;i++L

result@iD = t.argHi+1L;
result@pv-1D = a;

forHint i=pv-1;i<t.sizeHL;i++L
result@i+1D = t.argHi+1L;

10 The Framework of the Theorema-Java Compiler 67

return new TupleHresultL;<��insertElement
static public Tuple createTupleHData@D jlsL8

ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
forHint i=0;i<jls.length;i++L8

if Hjls@iD instanceof SequenceL8
forHint j=0;j<HHSequenceLjls@iDL.sizeHL;j++L

al.addHHHSequenceLjls@iDL.argHj+1LL;<��if
else

al.addHjls@iDL;<��for
ts = al.toArrayHtsL;
return new TupleHtsL;<��createTuple

static public Sequence restAsSequenceHTuple t,int nL8
Data@D s = new Data@t.sizeHL-nD;
for Hint i=n;i<t.sizeHL;i++L

s@i-nD = t.argHi+1L;
return new SequenceHsL;<��restAsSequence<��class BI_Tuple

The class BI_Set (its source code is given below), contains several (static) methods for basic opera-

tions on sets, e.g., intersection, union, insert.

public class BI_Set8
static public boolean IsSetHData a1L8

return Ha1 instanceof SetL;<��IsSet
static public Data intersectionHSet a1,Set a2L8

ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
Data x;

forHint i=1;i£a1.sizeHL;i++L

10 The Framework of the Theorema-Java Compiler 68

8
x = a1.argHiL;
if Ha2.containsHxLL al.addHxL;<��for

ts = al.toArrayHtsL;
return new SetHtsL;<��intersection

static public Data intersectionHData... asL8
ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
Set a1 = HSetLas@0D;
int setCount = as.length;

Data x;

boolean b;

int j;

forHint i=1;i£a1.sizeHL;i++L8
x = a1.argHiL;
j = 1;

b = true;

whileHHj<setCountL&&bL8
if H!HHSetLas@jDL.containsHxLL

b = false;

else

j++;<��while
if HbL

al.addHxL;<��for
ts = al.toArrayHtsL;
return new SetHtsL;<��intersection

static public Data unionHSet a1,Set a2L8
ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
Data x;

forHint i=1;i£a1.sizeHL;i++L
al.addHa1.argHiLL;

forHint i=1;i£a2.sizeHL;i++L8
x = a2.argHiL;

10 The Framework of the Theorema-Java Compiler 69

if H!al.containsHxLL
al.addHxL;<��for

ts = al.toArrayHtsL;
return new SetHtsL;<��union

static public Data unionHData... asL8
ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
Data x;

forHint i=0;i<as.length;i++L
forHint j=1;j£HHSetLas@iDL.sizeHL;j++L8

x = HHSetLas@iDL.argHjL;
if H!al.containsHxLL

al.addHxL;<��for
ts = al.toArrayHtsL;
return new SetHtsL;<��union

static public Data crossHSet a1,Set a2L8
int a1_size = a1.sizeHL;
int a2_size = a2.sizeHL;
int index = 0;

Data@D ts = new Data@a1_size*a2_sizeD;
forHint i=0;i<a1_size;i++L

forHint j=0;j<a2_size;j++L8
ts@indexD=new TupleHnew Data@D8a1.argHi+1L,a2.argHj+1L<L;
index++;<��for

return new SetHtsL;<��cross
static public Data crossHData... asL8

int size = as.length;

int i@D = new int@sizeD;
int total_size = 1;

int p,index;

Data@D t;

Data@D ts;

10 The Framework of the Theorema-Java Compiler 70

forHint j=0;j<size;j++L8
total_size *= HHSetLas@jDL.sizeHL;
i@jD = 0;<��for

if Htotal_size�0L
return new SetHnew Data@D8<L;

ts = new Data@total_sizeD;
index = 0;

whileHi@0D<HHSetLas@0DL.sizeHLL8
t = new Data@sizeD;
forHint j=0;j<size;j++L

t@jD = HHSetLas@jDL.argHi@jD+1L;
ts@indexD = new TupleHtL;
index++;

p = size-1;

i@pD++;

whileHHp>0L&&Hi@pD�HHSetLas@pDL.sizeHLLL8
i@pD = 0;

p--;

i@pD++;<��while<��while
return new SetHtsL;<��cross

static public Data minusHSet a1,Set a2L8
ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
Data x;

forHint i=1;i£a1.sizeHL;i++L8
x = a1.argHiL;
if H!a2.containsHxLL

al.addHxL;<��for
ts = al.toArrayHtsL;
return new SetHtsL;<��minus

static public Data minusHData... asL8
ArrayList<Data>al = new ArrayList<Data>HL;
Data@D ts = new Data@0D;
Set a1 = HSetLas@0D;

;

10 The Framework of the Theorema-Java Compiler 71

int setCount = as.length;

Data x;

boolean b;

int j;

forHint i=1;i£a1.sizeHL;i++L8
x = a1.argHiL;
j = 1;

b = true;

whileHHj<setCountL&&bL8
if HHHSetLas@jDL.containsHxLL

b = false;

else

j++;<��while
if HbL

al.addHxL;<��for
ts = al.toArrayHtsL;
return new SetHtsL;<��minus

static public Set insertHSet s,Data aL8
Data@D result = new Data@s.sizeHL+1D;
forHint i=0;i<s.sizeHL;i++L

result@iD=s.argHi+1L;
result@s.sizeHLD=a;

return new SetHresultL;<��insert
static public Data powersetHSet aL8

int size = a.sizeHL;
int p;

int index;

Data@D ts;

if Hsize>30L��too big!

return null;

ts = new Data@H1<<sizeLD;��size of ts is 2^size

ts@0D = new SetHnew Data@D8<L;
p = 1;

index = 1;

forHint i=0;i<size;i++L

10 The Framework of the Theorema-Java Compiler 72

8
forHint j=0;j<p;j++L8

ts@indexD = insertHHSetLts@jD,a.argHi+1LL;
index++;<��for

p*=2;<��for
return new SetHtsL;<��powerset

static public boolean isSubsetEqualHSet a1,Set a2L8
forHint i=1;i£a1.sizeHL;i++L

if H!a2.containsHa1.argHiLLL
return false;

return true;<��isSubset
��checks if a1 is a properH!L subset of a2

static public boolean isSubsetHSet a1,Set a2L8
return HHa1.sizeHL¹a2.sizeHLL&&isSubsetEqualHa1,a2LL;<��isSubset

static public boolean isSupersetEqualHSet a1,Set a2L8
return isSubsetEqualHa2,a1L;<��isSupersetEqual

static public boolean isSupersetHSet a1,Set a2L8
return isSubsetHa2,a1L;<��isSuperset<��class BI_Set

10.2.6 The Class Sequence

The class Sequence is an auxiliary class that is used for handling an arbitrary long sequence of Data

instances.

public class Sequence extends Data8
Data@D jls;

public SequenceHData... jlsL8
this.jls=jls;<��Sequence

10 The Framework of the Theorema-Java Compiler 73

public Data argHint nL8
if Hn-1<jls.lengthL

return jls@n-1D;
return null;<��arg

public Data argHBI_Integer biL8
return argHbi.asIntHLL;<��arg

public boolean equalHData xL8
if H!Hx instanceof SequenceLL

return false;

Sequence xt = HSequenceLx;
if Hxt.sizeHL¹jls.lengthL

return false;

forHint i=0;i<jls.length;i++L
if H!jls@iD.equalHxt.argHi+1LLL

return false;

return true;<��equal
public int sizeHL8

return jls.length;<��size
public String toStringHL8

return toExprHL.toStringHL;<��toString
public Expr toExprHL8

Expr@D es = new Expr@jls.lengthD;
forHint i=0;i<jls.length;i++L

es@iD = jls@iD.toExprHL;
return new ExprHnew ExprHExpr.SYMBOL,"Sequence"L,esL;<��toExpr<��class Sequence

10 The Framework of the Theorema-Java Compiler 74

10.2.7 The Class Factory

For every theory that is compiled by the user a class ExtendedFactory is created which provides

information on the constructors (see Chapter 4), the functions, and the predicates of the corresponding

theory. The superclass of this factory class is always Factory, which basically contains methods and

fields for handling truth values.

public class Factory8
static False _false=new FalseHL;
static True _true=new TrueHL;
public static Class@D getSignatureHString methodNameL
throws NoSuchMethodException8

throw new NoSuchMethodExceptionH
String.formatH"Method %s could not be found.",methodNameLL;<��getSignature

public static Data convertBooleanToDataHboolean bL8
if HbL

return getTrueHL;
else

return getFalseHL;<��convertBooleanToData
public static Data getFalseHL8

return _false;<��getFalse
public static Data getTrueHL8

return _true;<��getTrue
public static Data getInstanceHString className,Data@D argsL
throws ClassNotFoundException8

if HclassName.equalsH"False"LL
return _false;

if HclassName.equalsH"True"LL
return _true;

throw new ClassNotFoundExceptionH
String.formatH"Class %s with %d parameters could not be found.",

className,args.lengthLL;<��getInstance<��Factory

10 The Framework of the Theorema-Java Compiler 75

10.2.8 The Class Constants

This class contains several useful constants as static fields.

public class Constants8
public static final String USER_THEORIES = "JavaCompiler.User.Theories";

public static final String USER_DOMAINS = "JavaCompiler.User.Domains";

public static final String USER_DOMAINS_CONSTRUCTORS =

"JavaCompiler.User.Domains._Constructors";

public static final char TRADEMARK = 8482;

public static final char EPSILON = 1013;

public static final char DASH = 8211;

public static final char INTEGERS = 63409;��dsN
public static final char RATIONALS = 63412;��dsQ
public static final String sDASH = String.valueOfHDASHL;<��class Constants

10.3 The Package BasicDomains

The classes of the package BasicDomains comprise basic and specific classes that are needed for the

translation of functors and domains from Theorema to Java.

10.3.1 The Interface Domain

The interface Domain is an empty interface and has to be implemented by all classes which represent a

domain.

10.3.2 The Classes Integers, Rationals, and IntegersMod5

The classes Integers, Rationals, and IntegersMod5 implement the interface Domain and

represent the domain of integers, the domain of rational numbers, and the domain of integers modulo

five, respectively. Since the implementations of these classes are quite lengthy, we only present the

compactly formatted code of Rationals:

public class Rationals implements Domain8
private static BI_Rational zero=BI_Rational.ZERO;

private static BI_Rational one=BI_Rational.ONE;

public static boolean isElementHData xL8return HHx instanceof BI_RationalLÈÈHx instanceof BI_IntegerLL;<
public static boolean elementHData xL8return isElementHxL;<
public static BI_Rational plusHBI_Rational a1,BI_Rational a2L8return a1.addHa2L;<

10 The Framework of the Theorema-Java Compiler 76

public static BI_Rational plusHBI_Integer a1,BI_Rational a2L8return a1.asBIRationalHL.addHa2L;<
public static BI_Rational plusHBI_Rational a1,BI_Integer a2L8return a1.addHa2.asBIRationalHLL;<
public static BI_Rational plusHBI_Integer a1,BI_Integer a2L8return a1.asBIRationalHL.addHa2.asBIRationalHLL;<
public static BI_Rational plusHData... asL8

BI_Rational result = BI_Rational.ZERO;

for Hint i=0;i<as.length;i++L 8
if Has@iD instanceof BI_IntegerL result = plusHresult,HBI_IntegerLas@iDL;
else result = plusHresult,HBI_RationalLas@iDL;<��for

return result;<��plus
public static BI_Rational minusHBI_Integer a1,BI_Integer a2L8return a1.minusHa2L.asBIRationalHL;<
public static BI_Rational minusHBI_Integer a1,BI_Rational a2L8return a1.asBIRationalHL.minusHa2L;<
public static BI_Rational minusHBI_Rational a1,BI_Integer a2L8return a1.minusHa2.asBIRationalHLL;<
public static BI_Rational minusHBI_Rational a1,BI_Rational a2L8return a1.minusHa2L;<
public static BI_Rational minusHBI_Rational a1L8return a1.minusHL;<
public static BI_Rational minusHBI_Integer a1L8return a1.minusHL.asBIRationalHL;<
public static BI_Rational minusHData... asL8

BI_Rational result;

if Has@0D instanceof BI_IntegerL result = HHBI_IntegerLas@0DL.asBIRationalHL;
else result = HBI_RationalLas@0D;
if Has.length�1L return result.minusHL;
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL result = minusHresult,HBI_IntegerLas@iDL;
else result=minusHresult,HBI_RationalLas@iDL;<��for

return result;<��minus
public static BI_Rational times

10 The Framework of the Theorema-Java Compiler 77

public static BI_Rational timesHBI_Integer a1,BI_Integer a2L8return a1.multiplyHa2L.asBIRationalHL;<
public static BI_Rational timesHBI_Integer a1,BI_Rational a2L8return a1.asBIRationalHL.multiplyHa2L;<
public static BI_Rational timesHBI_Rational a1,BI_Integer a2L8return a1.multiplyHa2.asBIRationalHLL;<
public static BI_Rational timesHBI_Rational a1,BI_Rational a2L8return a1.multiplyHa2L;<
public static BI_Rational timesHData... asL8

BI_Rational result=BI_Rational.ONE;

for Hint i=0;i<as.length;i++L 8
if Has@iD instanceof BI_IntegerL result = timesHresult,HBI_IntegerLas@iDL;
else result = timesHresult,HBI_RationalLas@iDL;<��for

return result;<��times
public static BI_Rational divideHBI_Integer a1,BI_Integer a2L8return divideHa1.asBIRationalHL,a2.asBIRationalHLL;<
public static BI_Rational divideHBI_Integer a1,BI_Rational a2L8return a1.asBIRationalHL.divideHa2L;<
public static BI_Rational divideHBI_Rational a1,BI_Integer a2L8return a1.divideHa2.asBIRationalHLL;<
public static BI_Rational divideHBI_Rational a1,BI_Rational a2L8return a1.divideHa2L;<
public static BI_Rational divideHData... asL8

BI_Rational result;

if Has@0D instanceof BI_IntegerL result = HHBI_IntegerLas@0DL.asBIRationalHL;
else result=HBI_RationalLas@0D;
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL
result = divideHresult,HBI_IntegerLas@iDL;

else result = divideHresult,HBI_RationalLas@iDL;<��for
return result;<��divide

public static BI_Rational powerHBI_Integer a1,BI_Integer a2L8return BI_Rational.valueOfHa1.powHa2L,BI_Integer.ONEL;<
public static BI_Rational powerHBI_Rational a1,BI_Integer a2L8return a1.powHa2L;<
public static BI_Rational power

10 The Framework of the Theorema-Java Compiler 78

public static BI_Rational powerHData... asL8
BI_Rational result;

if Has@0D instanceof BI_RationalL result = HBI_RationalLas@0D;
else result = HHBI_IntegerLas@0DL.asBIRationalHL;
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL
result = powerHresult,HBI_IntegerLas@iDL;

else if HHHBI_RationalLas@iDL.getDivisorHL.equalsHBigInteger.ONELL
result = powerHresult,

BI_Integer.valueOfHHHBI_RationalLas@iDL.getDividendHLLL;
else return null;<��for

return result;<��power
public static BI_Rational maxHBI_Rational a1,BI_Rational a2L8if Ha1.isGreaterHa2LL return a1;else return a2;<
public static BI_Rational maxHBI_Rational a1,BI_Integer a2L8

BI_Rational rat = a2.asBIRationalHL;
if Ha1.isGreaterHratLL return a1;else return rat;<��max

public static BI_Rational maxHBI_Integer a1,BI_Rational a2L8
BI_Rational rat = a1.asBIRationalHL;
if Hrat.isGreaterHa2LL return rat;else return a2;<��max

public static BI_Rational maxHBI_Integer a1,BI_Integer a2L8
BI_Rational rat1 = a1.asBIRationalHL;
BI_Rational rat2 = a2.asBIRationalHL;
if Hrat1.isGreaterHrat2LL return rat1;else return rat2;<��max

public static BI_Rational maxHData... asL8
BI_Rational result;

if Has@0D instanceof BI_IntegerL result = HHBI_IntegerLas@0DL.asBIRationalHL;
else result = HBI_RationalLas@0D;
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL result = maxHresult,HBI_IntegerLas@iDL;
else result = maxHresult,HBI_RationalLas@iDL;<��for

return result;<��max
public static BI_Rational minHBI_Rational a1,BI_Rational a2L8if Ha1.isGreaterHa2LL return a2;else return a1;<

10 The Framework of the Theorema-Java Compiler 79

public static BI_Rational minHBI_Rational a1,BI_Integer a2L8
BI_Rational rat = a2.asBIRationalHL;
if Ha1.isGreaterHratLL return rat;else return a1;<��min

public static BI_Rational minHBI_Integer a1,BI_Rational a2L8
BI_Rational rat = a1.asBIRationalHL;
if Hrat.isGreaterHa2LL return a2;else return rat;<��min

public static BI_Rational minHBI_Integer a1,BI_Integer a2L8
BI_Rational rat1 = a1.asBIRationalHL;
BI_Rational rat2 = a2.asBIRationalHL;
if Hrat1.isGreaterHrat2LL return rat2;else return rat1;<��min

public static BI_Rational minHData... asL8
BI_Rational result;

if Has@0D instanceof BI_IntegerL result = HHBI_IntegerLas@0DL.asBIRationalHL;
else result = HBI_RationalLas@0D;
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL result = minHresult,HBI_IntegerLas@iDL;
else result = minHresult,HBI_RationalLas@iDL;<��for

return result;<��min
public static boolean lessHBI_Rational a1,BI_Rational a2L8if Ha1.isLessHa2LL return true;else return false;<
public static boolean lessHBI_Rational a1,BI_Integer a2L8

BI_Rational rat = a2.asBIRationalHL;
if Ha1.isLessHratLL return true;else return false;<��less

public static boolean lessHBI_Integer a1,BI_Rational a2L8
BI_Rational rat = a1.asBIRationalHL;
if Hrat.isLessHa2LL return true;else return false;<��less

public static boolean lessHBI_Integer a1,BI_Integer a2L8
BI_Rational rat1 = a1.asBIRationalHL;
BI_Rational rat2 = a2.asBIRationalHL;
if Hrat1.isLessHrat2LL return true;else return false;<��less

10 The Framework of the Theorema-Java Compiler 80

public static boolean lessHData... asL8
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL 8
if Has@i-1D instanceof BI_IntegerL 8

if H!lessHHBI_IntegerLas@i-1D,HBI_IntegerLas@iDLL return false;< else if Has@i-1D instanceof BI_RationalL 8
if H!lessHHBI_RationalLas@i-1D,HBI_IntegerLas@iDLL return false;< else return false;< else if Has@iD instanceof BI_RationalL 8

if Has@i-1D instanceof BI_IntegerL 8
if H!lessHHBI_IntegerLas@i-1D,HBI_RationalLas@iDLL return false;< else if Has@i-1D instanceof BI_RationalL 8
if H!lessHHBI_RationalLas@i-1D,HBI_RationalLas@iDLL return false;< else return false;< else return false;<��for

return true;<��less
public static boolean greaterHBI_Rational a1,BI_Rational a2L8if Ha1.isGreaterHa2LL return true;else return false;<
public static boolean greaterHBI_Rational a1,BI_Integer a2L8

BI_Rational rat = a2.asBIRationalHL;
if Ha1.isGreaterHratLL return true;else return false;<��greater

public static boolean greaterHBI_Integer a1,BI_Rational a2L8
BI_Rational rat = a1.asBIRationalHL;
if Hrat.isGreaterHa2LL return true;else return false;<��greater

public static boolean greaterHBI_Integer a1,BI_Integer a2L8
BI_Rational rat1 = a1.asBIRationalHL;
BI_Rational rat2 = a2.asBIRationalHL;
if Hrat1.isGreaterHrat2LL return true;else return false;<��greater

public static boolean greaterHData... asL8
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL 8
if Has@i-1D instanceof BI_IntegerL 8

if H!greaterHHBI_IntegerLas@i-1D,HBI_IntegerLas@iDLL
return false;< else if Has@i-1D instanceof BI_RationalL 8

if H!greaterHHBI_RationalLas@i-1D,HBI_IntegerLas@iDLL
return false;< else return false;< else if

10 The Framework of the Theorema-Java Compiler 81

< else if Has@iD instanceof BI_RationalL 8
if Has@i-1D instanceof BI_IntegerL 8

if H!greaterHHBI_IntegerLas@i-1D,HBI_RationalLas@iDLL
return false;< else if Has@i-1D instanceof BI_RationalL 8

if H!greaterHHBI_RationalLas@i-1D,HBI_RationalLas@iDLL
return false;< else return false;< else return false;<��for

return true;<��greater
public static boolean lessEqualHBI_Rational a1,BI_Rational a2L8if Ha1.isLessEqualHa2LL return true;else return false;<
public static boolean lessEqualHBI_Rational a1,BI_Integer a2L8

BI_Rational rat = a2.asBIRationalHL;
if Ha1.isLessEqualHratLL return true;else return false;<��lessEqual

public static boolean lessEqualHBI_Integer a1,BI_Rational a2L8
BI_Rational rat = a1.asBIRationalHL;
if Hrat.isLessEqualHa2LL return true;else return false;<��lessEqual

public static boolean lessEqualHBI_Integer a1,BI_Integer a2L8
BI_Rational rat1 = a1.asBIRationalHL;
BI_Rational rat2 = a2.asBIRationalHL;
if Hrat1.isLessEqualHrat2LL return true;else return false;<��lessEqual

public static boolean lessEqualHData... asL8
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL 8
if Has@i-1D instanceof BI_IntegerL 8

if H!lessEqualHHBI_IntegerLas@i-1D,HBI_IntegerLas@iDLL
return false;< else if Has@i-1D instanceof BI_RationalL 8

if H!lessEqualHHBI_RationalLas@i-1D,HBI_IntegerLas@iDLL
return false;< else return false;< else if Has@iD instanceof BI_RationalL 8

if Has@i-1D instanceof BI_IntegerL 8
if H!lessEqualHHBI_IntegerLas@i-1D,HBI_RationalLas@iDLL

return false;< else if Has@i-1D instanceof BI_RationalL 8
if H!lessEqualHHBI_RationalLas@i-1D,HBI_RationalLas@iDLL

return false;< else return false;< else return false;

10 The Framework of the Theorema-Java Compiler 82

< else return false;<��for
return true;<��lessEqual

public static boolean greaterEqualHBI_Rational a1,BI_Rational a2L8if Ha1.isGreaterEqualHa2LL return true;else return false;<
public static boolean greaterEqualHBI_Rational a1,BI_Integer a2L8

BI_Rational rat = a2.asBIRationalHL;
if Ha1.isGreaterEqualHratLL return true;else return false;<��greaterEqual

public static boolean greaterEqualHBI_Integer a1,BI_Rational a2L8
BI_Rational rat = a1.asBIRationalHL;
if Hrat.isGreaterEqualHa2LL return true;else return false;<��greaterEqual

public static boolean greaterEqualHBI_Integer a1,BI_Integer a2L8
BI_Rational rat1 = a1.asBIRationalHL;
BI_Rational rat2 = a2.asBIRationalHL;
if Hrat1.isGreaterEqualHrat2LL return true;else return false;<��greaterEqual

public static boolean greaterEqualHData... asL8
for Hint i=1;i<as.length;i++L 8

if Has@iD instanceof BI_IntegerL 8
if Has@i-1D instanceof BI_IntegerL 8

if H!greaterEqualHHBI_IntegerLas@i-1D,HBI_IntegerLas@iDLL
return false;< else if Has@i-1D instanceof BI_RationalL 8

if H!greaterEqualHHBI_RationalLas@i-1D,HBI_IntegerLas@iDLL
return false;< else return false;< else if Has@iD instanceof BI_RationalL 8

if Has@i-1D instanceof BI_IntegerL 8
if H!greaterEqualHHBI_IntegerLas@i-1D,HBI_RationalLas@iDLL

return false;< else if Has@i-1D instanceof BI_RationalL 8
if H!greaterEqualHHBI_RationalLas@i-1D,HBI_RationalLas@iDLL

return false;< else return false;< else return false;<��for
return true;<��greaterEqual

public static Data constantsHString nameL8
if Hname.equalsH"0"LL return zero;

;

10 The Framework of the Theorema-Java Compiler 83

if Hname.equalsH"1"LL return one;

return null;<��Constants
public static String getDomainNameHL8return String.valueOfHConstants.RATIONALSL;<<��class Rationals

10.3.3 The Class DomainData

The class DomainData is derived from Data and encapsulates a domain class (e.g., the class Ratio-

nals), i.e., it stores a class object in its private field domainClass. DomainData is used to pass a

domain as a parameter to a method, which can then use the method call to invoke methods of the

encapsulated domain.

public class DomainData extends Data8
private Class domainClass;

public DomainDataHClass domainClassL8
this.domainClass=domainClass;<��DomainData

public Data callHString methodName,Class@D classes,Object@D argsL8
try8

return HDataLHHClass<?>LdomainClassL.
getDeclaredMethodHmethodName,classesL.invokeHnull,argsL;<

catch HNoSuchMethodException exL8
Data@D ds=new Data@args.lengthD;
forHint i=0;i<args.length;i++L

ds@iD = HDataLargs@iD;
try8

return HDataLHHClass<?>LdomainClassL.getDeclaredMethodHmethodName,
new Class@D8Data@D.class<L.invokeHnull,new Object@D8ds<L;<��try

catch HException exxL8
exx.printStackTraceHL;
return null;<��catch<��catch

catch HException exL8
return null;<��catch

10 The Framework of the Theorema-Java Compiler 84

<��catch<��call
public Data argHint nL8

return null;<��arg
public boolean equalHData xL8

return false;<��equal
public String toStringHL8

return null;<��toString
public Expr toExprHL8

try8
return new ExprHExpr.SYMBOL,HStringLHHClass<?>LdomainClassL.

getDeclaredMethodH"getDomainName",HClass@DLnullL.
invokeHnull,HObject@DLnullLL;<��try

catch HException eL8
return null;<��catch<��toExpr<��DomainData

10.4 The JavaComputer Class

The class JavaComputer is an interface between Theorema and Java. The three commands Java–

Compute, Java–UseTheories, and Java–UseDomains (see Chapter 8) pass their arguments

directly to an instance of this class, which is created during the initialization of the Theorema-Java

Compiler. JavaComputer implements basically the following methods, which correspond to these

three user commands:

è compute: This method takes an expression (i.e., an object of type com.wolfram.jlink.-

Expr), evaluates it, and returns the result. It is the central method which is able to handle

integers and rational numbers, to create Tuple objects, to instantiate encapsulating objects for

higher order functions, and, of course, call methods defined in theories and domains.

è useTheories: This method takes a list of theory names as strings, loads the corresponding

Java classes (i.e., calls the method loadClass of the default class loader), and builds up an

internal table of the methods of the loaded theories.

è useDomains: This method takes a list of domain names and loads (i.e., calls the method

loadClass of the default class loader) the corresponding Java classes.

10 The Framework of the Theorema-Java Compiler 85

è

useDomains: This method takes a list of domain names and loads (i.e., calls the method

loadClass of the default class loader) the corresponding Java classes.

10 The Framework of the Theorema-Java Compiler 86

Part 2

Case Studies

In this part of the thesis we will present two case studies which show the power and usability of the

Theorema-Java Compiler.

 The first case study is on Gröbner Bases, and we will define there several functors to compute a so-

called Gröbner Extension of a given ring. All the functors which will be presented in the course of this

case study are based on the work of Bruno Buchberger in [Buch03].

In the second case study we will use Neville's algorithm for the interpolation of univariate polynomi-

als. The functor and algorithms presented in that part are based on [Wind06].

Before we actually start, let us quit the current Mathematica kernel and reload Theorema and the

Theorema-Java Compiler.

Needs@"Theorema`"D
Needs@"Theorema`JavaCompiler`JavaCompiler "̀D

Additionally, we set Mathematica's $RecursionLimit and $IterationLimit to Infinity:

$RecursionLimit = Infinity;

$IterationLimit = Infinity;

11 Gröbner Bases

In this chapter we will present, after some preparatory work, the functor Groebner-Extension that

takes a so-called reduction ring R and returns R augmented by a function which computes Gröbner Bases

in R. First, we will define several auxiliary functors for computing in reduction rings and with power

products represented by tuples. We will shortly explain these functors and give some exemplary computa-

tions in Theorema. Then, we will present the functor Groebner-Extension, compute Gröbner

Bases in several domains, and compare the computing times of original Theorema and Java code created

by the Theorema-Java Compiler.

The functors presented in this chapter were originally developed by Bruno Buchberger in [Buch03]

and then adopted by the author of this thesis.

11.1 The Functor ReductionField

The following functor ReductionField takes a field D and adds the operations rdm and lcrd. For

details on these operations we refer again to [Buch03].

DefinitionB"Reduction Field" , any@DD,
ReductionField@DD = FunctorBN, any@x, yD,

s = X\
Î
N

@xD � Î
D

@xD
0
N

= 0
D

1
N

= 1
D

x +
N
y = x +

D
y

-
N
x = -

D
x

x -
N
y = x -

D
y

x*
N
y = x*

D
y

x�
N
y = x�

D
y

x >
N
y � x >

D
y

rdm
N

@x, yD =
x�

D
y Ü x ¹ 0

D
í y ¹ 0

D

0
D

Ü otherwise

lcrd
N

@x, yD =
1
D

Ü x ¹ 0
D

í y ¹ 0
D

0
D

Ü otherwise

FF

11.2 The Functor TuplesLex

The functor TuplesLex takes an integer k and produces a domain of lexical ordered tuples of length k.

11 Gröbner Bases 88

DefinitionB"Tuples Lexical Ordering", any@kD,
TuplesLex@kD =

FunctorBN, any@x, y, x�, y�D,
s = X\
Î
N

@xD � í
is|tuple@xD x¤ = k

"
i=1,¼,k

í Î
N

@xiD
xi ³

N
0

1
N

= [0
Integers

È
i=1,¼,k

_
x*

N
y = [xi + yi È

i=1,¼,k
_

x�
N
y = [xi - yi È

i=1,¼,k
_

Kx ý
N
yO� "

i=1,¼,k
xi £ yi

lcm
N

@x, yD = [Max@xi, yiD È
i=1,¼,k

_
X\ >

N
X\ � False

Xx, x�\ >
N

Xy, y�\ �

True Ü x > yXx�\ >
N

Xy�\ Ü Hx = yL
False Ü otherwise

deg
N

@X\D = -1

deg
N

@xD = Ú
i=1,¼,k

xi

isDisjunct
N

@x, yD � "
i=1,¼, x¤ HHxi = 0L ê Hyi = 0LL

FF
TheoryB"TuplesLex",
Definition@"Tuples Lexical Ordering"D

TupLex2 = TuplesLex@2D
TupLex3 = TuplesLex@3D
TupLex4 = TuplesLex@4D

F

11.3 The Functor TuplesDeg

The functor TuplesDeg takes a domain that is returned by TuplesLex and replaces its predicate >

by a new one which applies the degree lexicographic ordering.

11 Gröbner Bases 89

DefinitionB"Tuples Degree Lexical Ordering" , any@DD,
TuplesDeg@D D =

FunctorBN, any@x, yD,
s = X\
Î
N

@xD � Î
D

@xD
1
N

= 1
D

x*
N
y = x*

D
y

x�
N
y = x�

D
y

x ý
N
y � x ý

D
y

lcm
N

@x, yD = lcm
D

@x, yD
x >

N
y � whereBd = deg

D
@xD, e = deg

D
@yD, ë d > e

í d = e
x >

D
y

F
isDisjunct

N
@x, yD � isDisjunct

D
@x, yD

FF
TheoryB"TuplesDeg",
Definition@"Tuples Degree Lexical Ordering" D

TupDeg2 = TuplesDeg@TupLex2D
TupDeg3 = TuplesDeg@TupLex3D
TupDeg4 = TuplesDeg@TupLex4D

F

For a better understanding of the two previous functors we want to show some exemplary computations

and, for that, build the following knowledge base:

Use@XBuilt|in@"Tuples"D, Built|in@"Quantifiers"D,
Built|in@"Connectives"D, Built|in@"Numbers"D,
Built|in@"Number Domains"D, Theory@"TuplesLex"D, Theory@"TuplesDeg"D\D

Multiplying two tuples means adding their entries componentwise:

ComputeBX1, 2, 3\ *
TupLex3

X4, 5, 6\F
X5, 7, 9\

Furthermore, we my compute:

ComputeBX1, 1, 3\ >
TupDeg3

X1, 2, 1\F
True

11 Gröbner Bases 90

ComputeBX1, 1, 3\ >
TupLex3

X1, 2, 1\F
False

11.4 The Functor Poly

The functor Poly constructs a domain of polynomials from a given coefficient domain C and a given

domain T of power products represented by tuples.

DefinitionB"Polynomial Functor", any@C, TD,
Poly@C, TD =

FunctorBN, any@x, y, z, c, t, xs, xs, d, s, ys, ys, p, q, f, m�, n�D,
s = X\
Î
N

@X\D � True

Î
N

@XXc, s\, xs\D � í :

Î
C

@cD
Î
T

@sD
c ¹ 0

C

s >
T
LPP
N

@Xxs\D
Î
N

@Xxs\D
Î
N

@xsD � False

1
N

= [[1
C
, 1

T
__

0
N

= X\
LPP
N

@X\D = X\
LPP
N

@XXc, s\, xs\D = s

areLPPDisjunct
N

@x, yD � isDisjunct
T

BLPP
N

@xD, LPP
N

@yDF
lcmLPP

N
@x, yD = lcm

T
BLPP

N
@xD, LPP

N
@yDF

isTermDivisible
N

@x, yD � Kx ý
T
yO

isTermGreater
N

@x, yD � Kx >
T
yO

11 Gröbner Bases 91

X\ +
N
q = q

p +
N

X\ = p

XXc, s\, m�\ +
N

XXd, t\, n�\ =

Xc, s\ \ JXm�\ +
N

XXd, t\, n�\N Ü s >
T
t

Xd, t\ \ JXXc, s\, m�\ +
N

Xn�\N Ü t >
T
s

[c +
C
d, s_ \ JXm�\ +

N
Xn�\N Ü c ¹ -

C
d

Xm�\ +
N

Xn�\ Ü otherwise

-
N

X\ = X\
-
N

XXc, s\, m�\ = Z-
C
c, s^ \ J-

N
Xm�\N

p -
N
q = p +

N
J-
N
qN

p*
N

X\ = X\
X\ *

N
q = X\

XXc, s\, m�\ *
N

XXd, t\, n�\ = K[[c*
C
d, s*

T
t__ +

N
XXc, s\\ *

N
Xn�\O +

N
Xm�\ *

N
XXd, t\, n�\

KX\ >
N
pO � False

KXXc, s\, m�\ >
N

X\O � True

KXXc, s\, m�\ >
N

XXd, t\, n�\O � ë

s >
T
t

í s = t
c >

C
d

í
s = t
c = dXm�\ >

N
Xn�\

norm
N

@X\, fD = X\
norm

N
@XXc, s\, m�\, fD = [c�

C
f, s_ \norm

N
@Xm�\, fD

rdm
N

@X\, pD = 0
N

rdm
N

@XXc, s\, m�\, X\D = 0
N

rdm
N

@XXc, s\, m�\, XXd, t\, n�\D =
[[rdm

C
@c, dD, s�

T
t__ Ü í rdm

C
@c, dD ¹ 0

C

t ý
T
s

0
N

Ü otherwise

lcrd
N

@XXc, s\, m�\, XXd, t\, n�\D = [[lcrd
C

@c, dD, lcm
T

@s, tD__

FF

11 Gröbner Bases 92

TheoryB"Poly",
Definition@"Reduction Field"D

Definition@"Polynomial Functor"D
QRed = ReductionField@QD

Poly2LexQ = Poly@QRed, TupLex2D
Poly3LexQ = Poly@QRed, TupLex3D
Poly4LexQ = Poly@QRed, TupLex4D
Poly2DegQ = Poly@QRed, TupDeg2D
Poly3DegQ = Poly@QRed, TupDeg3D
Poly4DegQ = Poly@QRed, TupDeg4D

F

The theory "Poly" defines the domain QRed by applying the functor ReductionField to Theorema's

built-in domain Q and three polynomial domains over QRed in two, three, and four variables. For the

following computations we add this theory to our knowledge base:

UseAlso@XTheory@"Poly"D\D
The two polynomials over Q in 3 variables -5 x y2 + 2 y z2 and x z-3 are represented by

XX-5, X1, 2, 0\\, X2, X0, 1, 2\\\ and XX1, X1, 0, 1\\, X-3, X0, 0, 0\\\, respectively. Their product can be

computed in Theorema:

ComputeB
XX-5, X1, 2, 0\\, X2, X0, 1, 2\\\ *

Poly3DegQ
XX1, X1, 0, 1\\, X-3, X0, 0, 0\\\F

XX-5, X2, 2, 1\\, X2, X1, 1, 3\\, X15, X1, 2, 0\\, X-6, X0, 1, 2\\\

We may check this result with Mathematica:

ExpandAI-5 x y2 + 2 y z2M * Hx z - 3LE
15 x y2 + H-5L x2 y2 z + H-6L y z2 + 2 x y z3

We can also normalize the product, i.e., divide its coefficients by -5:

ComputeB norm
Poly3DegQ

BXX-5, X1, 2, 0\\, X2, X0, 1, 2\\\ *
Poly3DegQ

XX1, X1, 0, 1\\, X-3, X0, 0, 0\\\, -5FF
[X1, X2, 2, 1\\, [-2

5
, X1, 1, 3_, X-3, X1, 2, 0\\, [6

5
, X0, 1, 2__

11 Gröbner Bases 93

11.5 The Functor Groebner–extension

Finally, we define the functor Groebner–extension, which takes a domain R (returned by the

functor Poly) and produces a domain that provides the following three operations to compute a Gröbner

Basis of a given set X of elements of R's carrier:

è Gb[X] computes a (not necessarily reduced) Gröbner Basis of X by applying the classical,

straight forward Buchberger algorithm without using Buchberger's criteria.

è rdGb[X] computes the reduced Gröbner Basis of X by computing Gb[X] and afterwards

reducing the result.

è rdGbBC12[X] computes the reduced Gröbner Basis of X by applying Buchberger's algorithm

and using the first and the second criterion of Buchberger.

All further details on this functor are given in [Buch03] and [Hibe95].

DefinitionB"Groebner extension" , any@RD,
Groebner|extension@RD =

FunctorBN, any@C, k, p, q, p�, q�, x, x�, g, g�, X, y, y�, Y, h, s, c, f, MD,
s = X\
Î
N

@xD � Î
R

@xD
0
N

= 0
R

1
N

= 1
R

x +
N
y = x +

R
y

-
N
x = -

R
x

x -
N
y = x -

R
y

x*
N
y = x*

R
y

x >
N
y � x >

R
y

rdm
N

@x, yD = rdm
R

@x, yD
lcrd

N
@x, yD = lcrd

R
@x, yD

rd
N

@x, yD = x -
N
rdm
N

@x, yD *
N
y

trd
N

@x, YD = trd
N

@x, Y, 1D
trd
N

@x, Y, kD =

x Ü k > Y¤
whereBx1 = rd

N
@x, YkD,

trd
N

@x1, Y, 1D Ü x >
N
x1

trd
N

@x, Y, k + 1D Ü otherwise
F

Ü otherwise

11 Gröbner Bases 94

hrd
N

@p, YD = whereBh = trd
N

@p, YD, p Ü h = p

trd
N

@h, YD Ü otherwise F
frd
N

@p, YD = frd
N

@p, Y, X\D
frd
N

@p, Y, XD = frd
N

Bp, Y, X, hrd
N

@p, YDF
frd
N

@p, Y, X, hD =

X Ü h = 0
N

whereBlth = h1, frd
N

Ah -
N

Xlth\, Y, X [lthEF Ü otherwise

cpd
N

@x, yD = whereBlxy = lcrd
N

@x, yD, rd
N

@lxy, xD -
N
rd
N

@lxy, yDF
isCriterion2

N
@x, y, X\D � False

isCriterion2
N

Ax, y, YXp, f, g\, y
�]E �

True Ü Hx = fL ì Hy = gL
True Ü Hx = gL ì Hy = fL
isCriterion2

N
Ax, y, Xy�\E Ü otherwise

isCriterion2
N

@x, y, X\, MD � False

isCriterion2
N

Ax, y, Yg, g
�], ME �

: True Ü í :

x ¹ g

y ¹ g

isTermDivisible
R

BLPP
R

@gD, lcmLPP
R

@x, yDF
NotBisCriterion2

N
@x, g, MDF

NotBisCriterion2
N

@y, g, MDF
isCriterion2

N
Ax, y, Xg�\, ME Ü otherwise

pairs
N

@X\D = X\
pairs

N
AYx, x

�]E = [Yx, Xx�\i] È
i=1,¼,¡Xx�\¥_ ^ pairs

N
AXx�\E

ard
N

@X\D = X\
ard
N

AYp, p
�]E = ard

N
AX\, p, Xp�\E

ard
N

@X, p, X\D = whereBh = frd
N

@p, XD, : X Ü h = 0
N

X [norm
N

@hD Ü otherwise
F

ard
N

AX, p, Yq, q
�]E = whereBh = frd

N
Ap, X ^ Yq, q

�]E,
: ard

N
AX, q, Xq�\E Ü h = 0

N

ard
N

BX [norm
N

@hD, q, Xq�\F Ü otherwise
F

norm
N

AYXc, s\, x
�]E = norm

R
AYXc, s\, x

�], cE
tcrd

N
@x, YD = tcrd

N
Bx, Y, 1, [0

N
È

i=1,¼, Y¤_F

11 Gröbner Bases 95

tcrd
N

@x, Y, k, CD =

Xx, C\ Ü k > Y¤
whereBc = rdm

N
@x, YkD, x1 = x -

N
rdm
N

@x, YkD *
N
Yk,

tcrd
N

Bx1, Y, 1, Ck{Ck+
N
cF Ü x >

N
x1

tcrd
N

@x, Y, k + 1, CD Ü otherwise
F

Ü otherwise

Gb
N

@XD = Gb
N

BX, pairs
N

@XDF
Gb
N

@X, X\D = X

Gb
N

@X, XXx, y\, x�\D = whereBh = trd
N

Bcpd
N

@x, yD, XF,
Gb
N

@X, Xx�\D Ü h = 0
N

Gb
N

BX[h, Xx�\ ^ [XXi, h\ È
i=1,¼, X¤_F Ü otherwise

F
GbBC12

N
@XD = GbBC12

N
BX, GbBC12Aux

N
Bpairs

N
@XD, X\FF

GbBC12
N

@X, X\D = X

GbBC12
N

@X, XXp, x, y\, x�\D =

GbBC12Aux2
N

@x, y, X, Xx�\D Ü í : NotBareLPPDisjunct
R

@x, yDF
NotBisCriterion2

N
@x, y, X, Xx�\DF

GbBC12
N

@X, Xx�\D Ü otherwise

GbBC12Aux
N

@X\, MD = M

GbBC12Aux
N

@XXx, y\, x�\, MD =

GbBC12Aux
N

BXx�\, GbBC12Aux
N

BlcmLPP
R

@x, yD, x, y, MFF
GbBC12Aux

N
@p, x, y, X\D = XXp, x, y\\

GbBC12Aux
N

@p, x, y, XXq, f, g\, x�\D =

Xp, x, y\ \ XXq, f, g\, x�\ Ü isTermGreater
R

@q, pD
Xq, f, g\ \GbBC12Aux

N
@p, x, y, Xx�\D Ü otherwise

GbBC12Aux2
N

@x, y, X, MD = whereBh = trd
N

Bcpd
N

@x, yD, XF,
GbBC12

N
@X, MD Ü h = 0

N

GbBC12
N

Bh\X, GbBC12Aux2
N

@h, X, MDF Ü otherwise
F

GbBC12Aux2
N

@h, X\, MD = M

GbBC12Aux2
N

@h, Xx, x�\, MD =

GbBC12Aux2
N

Bh, Xx�\, GbBC12Aux
N

BlcmLPP
R

@h, xD, h, x, MFF

11 Gröbner Bases 96

rdGb
N

@XD = ard
N

BGb
N

@XDF
rdGbBC12

N
@XD = ard

N
BGbBC12

N
@XDF

FF
TheoryB"GB",

Definition@"Groebner extension"D
GB2LexQ = Groebner|extension@Poly2LexQD
GB2DegQ = Groebner|extension@Poly2DegQD
GB3LexQ = Groebner|extension@Poly3LexQD
GB3DegQ = Groebner|extension@Poly3DegQD
GB4LexQ = Groebner|extension@Poly4LexQD
GB4DegQ = Groebner|extension@Poly4DegQD

F

We add the theory "GB" to our current knowledge base:

UseAlso@XTheory@"GB"D\D
We may now compute, for instance, the reduced Gröbner Basis of two polynomials over Q with respect

to the lexicographic term ordering:

ComputeB rdGb
GB2LexQ

@XXX1, X1, 0\\, X-1, X0, 1\\, X-5, X0, 0\\\,
XX1, X1, 1\\, X-1, X1, 0\\, X3, X0, 0\\\\DF

XXX1, X1, 0\\, X-1, X0, 1\\, X-5, X0, 0\\\,
XX1, X0, 2\\, X4, X0, 1\\, X-2, X0, 0\\\\

Hence, the reduced Gröbner Basis of 8x - y - 5, x y - x + 3< is 9x - y - 5, y2 + 4 y - 2=.

11.6 Compilation to Java

Now, we want to create all these domains which we defined in Theorema also on the Java side:

Java|DeclareDomain@TupLex2 = TuplesLex@2D,
Definition@"Tuples Lexical Ordering"DD
Java|DeclareDomain@TupLex3 = TuplesLex@3D,
Definition@"Tuples Lexical Ordering"DD
Java|DeclareDomain@TupLex4 = TuplesLex@4D,
Definition@"Tuples Lexical Ordering"DD

11 Gröbner Bases 97

Java|DeclareDomain@TupDeg2 = TuplesDeg@TupLex2D,
Definition@"Tuples Degree Lexical Ordering" DD
Java|DeclareDomain@TupDeg3 = TuplesDeg@TupLex3D,
Definition@"Tuples Degree Lexical Ordering" DD
Java|DeclareDomain@TupDeg4 = TuplesDeg@TupLex4D,
Definition@"Tuples Degree Lexical Ordering" DD
Java|DeclareDomain@QRed = ReductionField@QD,
Definition@"Reduction Field"DD
Java|DeclareDomain@Poly2LexQ = Poly@QRed, TupLex2D,
Definition@"Polynomial Functor"DD
Java|DeclareDomain@Poly3LexQ = Poly@QRed, TupLex3D,
Definition@"Polynomial Functor"DD
Java|DeclareDomain@Poly4LexQ = Poly@QRed, TupLex4D,
Definition@"Polynomial Functor"DD
Java|DeclareDomain@Poly2DegQ = Poly@QRed, TupDeg2D,
Definition@"Polynomial Functor"DD
Java|DeclareDomain@Poly3DegQ = Poly@QRed, TupDeg3D,
Definition@"Polynomial Functor"DD
Java|DeclareDomain@Poly4DegQ = Poly@QRed, TupDeg4D,
Definition@"Polynomial Functor"DD
Java|DeclareDomain@GB2LexQ = Groebner|extension@Poly2LexQD,
Definition@"Groebner extension"DD
Java|DeclareDomain@GB3LexQ = Groebner|extension@Poly3LexQD,
Definition@"Groebner extension"DD
Java|DeclareDomain@GB3DegQ = Groebner|extension@Poly3DegQD,
Definition@"Groebner extension"DD

11.7 Timing Measurements

11.7.1 The First Experiment

Finally, the stage for demonstrating some time measurements is set on both the Theorema side and the

Java side. We start with some computations in Theorema. Please note that, since we want to compute in a

computational session of Theorema, we have to set up the knowledge base accordingly.

Use@XBuilt|in@"Tuples"D,
Built|in@"Quantifiers"D, Built|in@"Connectives"D,
Built|in@"Numbers"D, Built|in@"Number Domains"D\D

ComputationalSession@D;
Use@XTheory@"TuplesLex"D,
Theory@"TuplesDeg"D, Theory@"Poly"D, Theory@"GB"D\D

11 Gröbner Bases 98

rdGb
GB2LexQ

@XXX1, X1, 0\\, X-1, X0, 1\\, X-5, X0, 0\\\,
XX1, X1, 1\\, X-1, X1, 0\\, X3, X0, 0\\\\D �� AbsoluteTiming

80.2031250, XXX1, X1, 0\\, X-1, X0, 1\\, X-5, X0, 0\\\,
XX1, X0, 2\\, X4, X0, 1\\, X-2, X0, 0\\\\<

EndComputationalSession@D
Now, we want to do the same computation by using the compiled Java program:

Java|UseDomains@8GB2LexQ, GB3LexQ, GB3DegQ<D
Java|ComputeB rdGb

GB2LexQ
@XXX1, X1, 0\\, X-1, X0, 1\\, X-5, X0, 0\\\,

XX1, X1, 1\\, X-1, X1, 0\\, X3, X0, 0\\\\DF �� AbsoluteTiming

80.0156250, XXX1, X1, 0\\, X-1, X0, 1\\, X-5, X0, 0\\\,
XX1, X0, 2\\, X4, X0, 1\\, X-2, X0, 0\\\\<

So, the speed-up factor in this example is about 13.

11.7.2 The Second Experiment

In this experiment we want to compute the reduced Gröbner Basis of a set of polynomials in three

variables over the rational numbers:

ComputationalSession@D
rdGbBC12

GB3LexQ
B[[X-2, X2, 0, 1\\, [1

3
, X0, 1, 1_, [5

7
, X0, 1, 0__,

[[1
2
, X1, 1, 1_, X-3, X1, 0, 1\\, X1, X0, 0, 0__F �� AbsoluteTiming

EndComputationalSession@D
:0.5937500,

[[X1, X0, 3, 2\\, [15
7
, X0, 3, 1_, X-12, X0, 2, 2\\, [-180

7
, X0, 2, 1_,

X36, X0, 1, 2\\, [540
7

, X0, 1, 1_, X-24, X0, 0, 0_, [X1, X1, 0, 0\\,

[1

12
, X0, 2, 1_, [5

28
, X0, 2, 0_, [-1

2
, X0, 1, 1_, [-15

14
, X0, 1, 0___>

11 Gröbner Bases 99

Java|ComputeBrdGbBC12
GB3LexQ

B[[X-2, X2, 0, 1\\, [1
3
, X0, 1, 1_, [5

7
, X0, 1, 0__,

[[1
2
, X1, 1, 1_, X-3, X1, 0, 1\\, X1, X0, 0, 0__FF �� AbsoluteTiming

:0.0156250,
[[X1, X0, 3, 2\\, [15

7
, X0, 3, 1_, X-12, X0, 2, 2\\, [-180

7
, X0, 2, 1_,

X36, X0, 1, 2\\, [540
7

, X0, 1, 1_, X-24, X0, 0, 0_, [X1, X1, 0, 0\\,

[1

12
, X0, 2, 1_, [5

28
, X0, 2, 0_, [-1

2
, X0, 1, 1_, [-15

14
, X0, 1, 0___>

In this experiment the speed-up factor is about 38.

11.7.3 The Third Experiment

ComputationalSession@D
rdGbBC12

GB3DegQ
B[[X-2, X2, 0, 1\\, [1

3
, X0, 1, 1_, [5

7
, X0, 1, 0__,

[[1
2
, X1, 1, 1_, X-3, X1, 0, 1\\, X1, X0, 0, 0_, [[-1

5
, X3, 1, 0_,

[2
3
, X1, 2, 0_, X1, X0, 1, 1\\, X-3, X0, 0, 0__F �� AbsoluteTiming

EndComputationalSession@D

11 Gröbner Bases 100

:42.3125000,

[[X1, X0, 0, 3\\, [257
525

, X2, 0, 0_, [-2243

4410
, X1, 1, 0_, [53642

1575
, X1, 0, 1_,

[-6227

3087
, X0, 2, 0_, [-361

150
, X0, 1, 1_, [4171

630
, X0, 0, 2_,

[-127088

11025
, X1, 0, 0_, [331627

30870
, X0, 1, 0_, [-1037

210
, X0, 0, 1_,

[-41942

4725
, X0, 0, 0__, [X1, X0, 3, 0\\, [12348

11975
, X2, 0, 0_,

[55202
11975

, X1, 1, 0_, [642096
11975

, X1, 0, 1_, [-5979

479
, X0, 2, 0_,

[37044
2395

, X0, 0, 2_, [-17388

479
, X1, 0, 0_, [84918

2395
, X0, 1, 0_,

[-26754

2395
, X0, 0, 1_, [-146412

11975
, X0, 0, 0__,

[X1, X1, 0, 2\\, [-1

10
, X2, 0, 0_, [3

28
, X1, 1, 0_, [-549

70
, X1, 0, 1_,

[2395
4116

, X0, 2, 0_, [19
30

, X0, 1, 1_, [-3

2
, X0, 0, 2_, [2444

735
, X1, 0, 0_,

[-3323

1029
, X0, 1, 0_, [3

4
, X0, 0, 1_, [19

10
, X0, 0, 0__,

[X1, X3, 0, 0\\, [3
2
, X2, 0, 0_, [-415

84
, X1, 1, 0_,

X78, X1, 0, 1\\, [-225

28
, X0, 1, 1_, [45

2
, X0, 0, 2_,

X-5, X0, 1, 0\\, [895
28

, X0, 0, 1_, [-57

2
, X0, 0, 0__,

[X1, X2, 1, 0\\, X-30, X1, 0, 1\\, [2395
294

, X0, 2, 0_, [-15

2
, X0, 1, 1_,

[450
7

, X1, 0, 0_, [-3375

49
, X0, 1, 0_, X45, X0, 0, 1_,

[X1, X0, 1, 2\\, [2
5
, X2, 0, 0_, [-3

7
, X1, 1, 0_, [114

5
, X1, 0, 1_,

[-4

3
, X0, 1, 0_, X-3, X0, 0, 1\\, [-38

5
, X0, 0, 0__,

[X1, X1, 2, 0\\, [28
5
, X2, 0, 0_, X-6, X1, 1, 0\\, [-14

15
, X0, 1, 0__,

[X1, X0, 2, 1\\, [15
7
, X0, 2, 0_, X-6, X0, 1, 1\\, X12, X1, 0, 0\\,

[-90

7
, X0, 1, 0__, [X1, X2, 0, 1\\, [-1

6
, X0, 1, 1_, [-5

14
, X0, 1, 0__,

XX1, X1, 1, 1\\, X-6, X1, 0, 1\\, X2, X0, 0, 0_>

11 Gröbner Bases 101

Java|ComputeBrdGbBC12
GB3DegQ

B[[X-2, X2, 0, 1\\, [1
3
, X0, 1, 1_, [5

7
, X0, 1, 0__,

[[1
2
, X1, 1, 1_, X-3, X1, 0, 1\\, X1, X0, 0, 0_, [[-1

5
, X3, 1, 0_,

[2
3
, X1, 2, 0_, X1, X0, 1, 1\\, X-3, X0, 0, 0__FF �� AbsoluteTiming

11 Gröbner Bases 102

:0.4843750,

[[X1, X0, 0, 3\\, [257
525

, X2, 0, 0_, [-2243

4410
, X1, 1, 0_, [53642

1575
, X1, 0, 1_,

[-6227

3087
, X0, 2, 0_, [-361

150
, X0, 1, 1_, [4171

630
, X0, 0, 2_,

[-127088

11025
, X1, 0, 0_, [331627

30870
, X0, 1, 0_, [-1037

210
, X0, 0, 1_,

[-41942

4725
, X0, 0, 0__, [X1, X0, 3, 0\\, [12348

11975
, X2, 0, 0_,

[55202
11975

, X1, 1, 0_, [642096
11975

, X1, 0, 1_, [-5979

479
, X0, 2, 0_,

[37044
2395

, X0, 0, 2_, [-17388

479
, X1, 0, 0_, [84918

2395
, X0, 1, 0_,

[-26754

2395
, X0, 0, 1_, [-146412

11975
, X0, 0, 0__,

[X1, X1, 0, 2\\, [-1

10
, X2, 0, 0_, [3

28
, X1, 1, 0_, [-549

70
, X1, 0, 1_,

[2395
4116

, X0, 2, 0_, [19
30

, X0, 1, 1_, [-3

2
, X0, 0, 2_, [2444

735
, X1, 0, 0_,

[-3323

1029
, X0, 1, 0_, [3

4
, X0, 0, 1_, [19

10
, X0, 0, 0__,

[X1, X3, 0, 0\\, [3
2
, X2, 0, 0_, [-415

84
, X1, 1, 0_,

X78, X1, 0, 1\\, [-225

28
, X0, 1, 1_, [45

2
, X0, 0, 2_,

X-5, X0, 1, 0\\, [895
28

, X0, 0, 1_, [-57

2
, X0, 0, 0__,

[X1, X2, 1, 0\\, X-30, X1, 0, 1\\, [2395
294

, X0, 2, 0_, [-15

2
, X0, 1, 1_,

[450
7

, X1, 0, 0_, [-3375

49
, X0, 1, 0_, X45, X0, 0, 1_,

[X1, X0, 1, 2\\, [2
5
, X2, 0, 0_, [-3

7
, X1, 1, 0_, [114

5
, X1, 0, 1_,

[-4

3
, X0, 1, 0_, X-3, X0, 0, 1\\, [-38

5
, X0, 0, 0__,

[X1, X1, 2, 0\\, [28
5
, X2, 0, 0_, X-6, X1, 1, 0\\, [-14

15
, X0, 1, 0__,

[X1, X0, 2, 1\\, [15
7
, X0, 2, 0_, X-6, X0, 1, 1\\, X12, X1, 0, 0\\,

[-90

7
, X0, 1, 0__, [X1, X2, 0, 1\\, [-1

6
, X0, 1, 1_, [-5

14
, X0, 1, 0__,

XX1, X1, 1, 1\\, X-6, X1, 0, 1\\, X2, X0, 0, 0_>

In this final experiment the speed-up factor is about 87.

11 Gröbner Bases 103

In this final experiment the speed-up factor is about 87.

11.7.4 Summary of Experiments

Table 11.1 summarizes some timing measurements of the algorithm rdGbBC12.

Task Theorema Compiled Theorema Speed - up Factor

rdGbBC12@Lex, 2 Variables, 3 PolynomialsD 0.75 s 0.02 s 38

rdGbBC12@Lex, 2 Variables, 4 PolynomialsD 1.19 s 0.02 s 60

rdGbBC12@Lex, 3 Variables, 3 PolynomialsD 10.67 s 0.17 s 63

rdGbBC12@Lex, 3 Variables, 4 PolynomialsD 33.44 s 0.48 s 70

rdGbBC12@Lex, 4 Variables, 3 PolynomialsD 27.25 s 0.39 s 70

rdGbBC12@Deg, 2 Variables, 3 PolynomialsD 1.16 s 0.02 s 60

rdGbBC12@Deg, 2 Variables, 4 PolynomialsD 1.67 s 0.03 s 56

rdGbBC12@Deg, 3 Variables, 3 PolynomialsD 13.94 s 0.17 s 82

rdGbBC12@Deg, 3 Variables, 4 PolynomialsD 20.02 s 0.22 s 91

rdGbBC12@Deg, 4 Variables, 3 PolynomialsD 53.11 s 0.70 s 76

Table 11.1: Time Measurements of rdGbBC12

11 Gröbner Bases 104

12 Interpolation of Univariate Polynomials

This chapter is about the interpolation of univariate polynomials by Neville's algorithm and is based on

[Wind06]. We will define the functor UnivPoly and the algorithms NevilleP and Eval–

NevilleP. After shortly explaining the corresponding Theorema code, we will compare the computing

times of original Theorema and Java code created by the Theorema-Java Compiler.

12.1 The Functor UnivPoly

The functor UnivPoly takes a field K and returns the univariate polynomial ring over K which repre-

sents polynomials as the tuples of their coefficients.

DefinitionB"Univariate Polynomial Functor", any@KD,
UnivPoly@KD = FunctorBP, any@p, q, n, aD,

s = X\
Î
P

@pD � Kp = [0
K
_O ë is|tuple@pD í p¤ > 0 í "

i=1,¼, p¤ Î
K

@piD í p p¤ ¹ 0
K

0
P

= [0
K
_

1
P

= Z1
K
^

index
P

@pD =

1 Ü "
j=1,¼, p¤ Kpj = 0

K
O

æ
i=1,¼, p¤ Kpi ¹ 0

K
O í "

j=i+1,¼, p¤ Kpj = 0
K
O Ü otherwise

deg
P

@pD = p¤ - 1

coef
P

@p, nD =
pn+1 Ü n ³ 0 í n £ deg

P
@pD

0
K

Ü otherwise

canonic
P

@pD = [pi È
i=1,¼,index

P
@pD_

const
P

@aD = Xa\
p +

P
q = canonic

P
B[coef

P
@p, iD +

K
coef

P
@q, iD È

i=0,¼,MaxBdeg
P

@pD,deg
P

@qDF_F
p -

P
q = canonic

P
B[coef

P
@p, iD -

K
coef

P
@q, iD È

i=0,¼,MaxBdeg
P

@pD,deg
P

@qDF_F

12 Interpolation of Univariate Polynomials 105

p*
P
q = canonic

P
B[ÚK

j=0,¼,i

coef
P

@p, jD *
K
coef

P
@q, i - jD È

i=0,¼,deg
P

@pD+deg
P

@qD_F
a×

P
p = canonic

P
B[a*

K
coef

P
@p, iD È

i=0,¼,deg
P

@pD_F
p�

P
a = [coef

P
@p, iD �

K
a È
i=0,¼,deg

P

@pD_
eval

P
@p, aD = ÚK

i=0,¼,deg
P

@pDcoefP
@p, iD *

K
a K̂ i

FF

12.2 The Algorithms NevilleP and Eval–NevilleP

The algorithm NevilleP takes a list of data points (in the form of the tuples x and a of the same length

n), a field K, and the univariate polynomial ring over K (returned by UnivPoly). It computes the

Neville polynomial which is of degree n-1 and goes through the given data points.

AlgorithmB"Neville", any@x, a, K, PD,
NevilleP@x, a, K, PD :=

const
P

@a1D Ü x¤ = 1

whereBn = x¤,
JZ-

K
x1, 1^ *

P
NevilleP@x1!î, a1!î, K, PD -

P

Z-
K
xn, 1^ *

P
NevilleP@xn!î, an!î, K, PDN �

P
Jxn -

K
x1NF

Ü otherwise F

The algorithm Eval–NevilleP takes five parameters: the first four have the same meaning as those of

NevilleP, the fifth one is an element v of K. Eval–NevilleP returns the value of the Neville

polynomial at the given point v.

AlgorithmB"Neville Evaluation", any@x, a, K, P, vD,
Eval|NevilleP@x, a, K, P, vD :=

a1 Ü x¤ = 1

whereBn = x¤,
JJv -

K
x1N *

K
Eval|NevilleP@x1!î, a1!î, K, P, vD -

K

Jv -
K
xnN *

K
Eval|NevilleP@xn!î, an!î, K, P, vDN �

K
Jxn -

K
x1NF

Ü otherwise

F

12 Interpolation of Univariate Polynomials 106

TheoryB"Neville",
Algorithm@"Neville"D

Algorithm@"Neville Evaluation"DF

12.3 Compilation to Java

To create the domain of univariate polynomials over Q on the Java side, we execute

Java|DeclareDomain@UnivPolyQ = UnivPoly@QD,
Definition@"Univariate Polynomial Functor"DD

Additionally, we compile the theory "Neville":

Java|Theory2Java@Theory@"Neville"DD

12.4 Timing Measurements

12.4.1 The First Experiment

We are now ready to perform some time measurements in both Theorema and Java.

Use@XBuilt|in@"Tuples"D, Built|in@"Quantifiers"D, Built|in@"Numbers"D,
Built|in@"Number Domains"D, Built|in@"Connectives"D\D

ComputationalSession@D
Use@XDefinition@"Univariate Polynomial Functor"D, Theory@"Neville"D\D
NevilleP@X1, 2, 3, 4, 5, 6, 7, 8, 9, 10\,X3, 1, 5, 2, 6, 10, -1, -9, 15, 20\, Q, UnivPoly@QDD �� AbsoluteTiming

:7.5937500, [-8,
45533

360
,

-530407

2016
,
10340243

45360
,

-596971

5760
,
469523

17280
,

-2443

576
,
3353

8640
,

-773

40320
,

143

362880
_>

EndComputationalSession@D
So, the computation of this Neville polynomial for 10 data points took Theorema about 7.59 seconds. Let

us use now the compiled algorithm:

Java|UseTheories@8"Neville"<D
Java|UseDomains@8UnivPolyQ<D

12 Interpolation of Univariate Polynomials 107

Java|Compute@NevilleP@X1, 2, 3, 4, 5, 6, 7, 8, 9, 10\,X3, 1, 5, 2, 6, 10, -1, -9, 15, 20\, Q, UnivPolyQDD �� AbsoluteTiming

:0.3125000, [-8,
45533

360
,

-530407

2016
,
10340243

45360
,

-596971

5760
,
469523

17280
,

-2443

576
,
3353

8640
,

-773

40320
,

143

362880
_>

The compiled Java code just needs about 0.31 seconds to compute this polynomial and, hence, it is about

25 times faster than the above computation performed in Theorema's computational session.

12.4.2 The Second Experiment

As a second experiment, we want to compute a Neville polynomial for 12 data points:

ComputationalSession@D
NevillePBX1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31\,

[1
2
, -3, 15,

7

9
, 61, 0, -7,

2

13
, 5, -2,

-1

15
,
20

29
_,

Q, UnivPoly@QDF �� AbsoluteTiming

EndComputationalSession@D
:31.6875000, [500106151202507

872862842880
,

-17084512287418862845921

12922551087641395200
,

272751935337391768663

239306501622988800
,

-1286857066635570953603

2584510217528279040
,

135129780087013929611

1076879257303449600
,

-1942771048943230861

99404239135703040
,

300875487730797797

153839893900492800
,

-825438116711096071

6461275543820697600
,

3881559120762221

717919504868966400
,

-1843141983702389

12922551087641395200
,

83324894573

39159245720125440
,

-16081636153

1174777371603763200
_>

12 Interpolation of Univariate Polynomials 108

Java|ComputeBNevillePBX1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31\, [1
2
, -3,

15,
7

9
, 61, 0, -7,

2

13
, 5, -2,

-1

15
,
20

29
_, Q, UnivPolyQFF �� AbsoluteTiming

:1.2968750, [500106151202507
872862842880

,
-17084512287418862845921

12922551087641395200
,

272751935337391768663

239306501622988800
,

-1286857066635570953603

2584510217528279040
,

135129780087013929611

1076879257303449600
,

-1942771048943230861

99404239135703040
,

300875487730797797

153839893900492800
,

-825438116711096071

6461275543820697600
,

3881559120762221

717919504868966400
,

-1843141983702389

12922551087641395200
,

83324894573

39159245720125440
,

-16081636153

1174777371603763200
_>

In this example the speed-up factor is again about 25.

12.4.3 The Third Experiment

In this example, we use the algorithm Eval–NevilleP:

ComputationalSession@D
Eval|NevillePBX1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31\,

[1
2
, -3, 15,

7

9
, 61, 0, -7,

2

13
, 5, -2,

-1

15
,
20

29
_,

Q, UnivPoly@QD, 181

13
F �� AbsoluteTiming

EndComputationalSession@D
:2.4531250, 12319766785038848315

1240483244261378364
>

Java|ComputeBEval|NevillePBX1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31\,
[1
2
, -3, 15,

7

9
, 61, 0, -7,

2

13
, 5, -2,

-1

15
,
20

29
_,

Q, UnivPolyQ,
181

13
FF �� AbsoluteTiming

:0.3437500, 12319766785038848315

1240483244261378364
>

The speed-up factor here is about 7.

12 Interpolation of Univariate Polynomials 109

12.4.4 The Fourth Experiment

Again, we use the algorithm Eval–NevilleP for a computation:

ComputationalSession@D
Eval|NevillePBX1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 39, 41\,

[1
2
, -3, 15,

7

9
, 61, 0, -7,

2

13
, 5, -2,

-1

15
,
20

29
,

5

19
,

-7

91
,
27

99
_,

Q, UnivPoly@QD, 181

13
F �� AbsoluteTiming

EndComputationalSession@D
:19.4531250, 13767650491180189006940

97430965333210375499061
>

Java|ComputeB
Eval|NevillePBX1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 39, 41\,

[1
2
, -3, 15,

7

9
, 61, 0, -7,

2

13
, 5, -2,

-1

15
,
20

29
,

5

19
,

-7

91
,
27

99
_,

Q, UnivPolyQ,
181

13
FF �� AbsoluteTiming

:2.8593750, 13767650491180189006940

97430965333210375499061
>

Also in this example the speed-up factor is about 7.

12.4.5 Summary of Experiments

Table 12.1 summarizes some timing measurements of the algorithm NevilleP.

Task Theorema Compiled Theorema Speed - up Factor

NevilleP@6 data pointsD 0.44 s 0.02 s 22

NevilleP@8 data pointsD 1.84 s 0.09 s 20

NevilleP@10 data pointsD 7.63 s 0.33 s 23

NevilleP@12 data pointsD 31.02 s 1.3 s 23

NevilleP@14 data pointsD 124.98 s 5.27 s 24

Table 12.1: Time Measurements of NevilleP

12 Interpolation of Univariate Polynomials 110

Conclusion and Future Work

In this thesis we showed how to drastically speed-up the computation times of original Theorema

programs by compiling them into executable Java byte code. The generated Java programs are not faster

by a constant factor, but rather depends the achievable acceleration on a size-parameter.

However, the execution times of the compiled Theorema programs are still far away from handcoded

Java or C programs. Hence, it is the major challenge for the future development of the Theorema-Java

Compiler to come up with additional ideas and techniques to further increase the speed-up.

We have chosen Java as the target language of the compiler mainly because of the well supported

J/Link and, secondly, because it is natural to believe that a object-oriented language should support the

generic programming philosophy of Theorema, in particular the functor mechanism. However, it would

still be reasonable to try out plain C as the target language because of its efficiency, since, in fact, the

method which we use for compiling Theorema functors (substitution of concrete function calls for

function variables in compiled code) does not depend on the availability of object oriented features.

Conclusion and Future Work 111

References

[Buch65] B. Buchberger. An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-

Dimensional Polynomial Ideal (German). Department of Mathematics, University of Innsbruck, Austria.

PhD Thesis, 1965.

[Buch91] B. Buchberger. Groebner Bases in Mathematica: Enthusiasm and Frustration. In: Proceedings

of the IFIP Working Conference on Programming Environments for High-Level Symbolic Computation,

September 23-27 1991, Karlsruhe, Germany; P.W. Gaffney, E.N. Houstis (eds.); pp. 80-91.

[Buch96a] B. Buchberger. Symbolic Computation: Computer Algebra and Logic. In: FroCoS: Frontiers

of Combined Systems, Applied Logic Series; F. Baader, K.U. Schulz (eds.); Kluwer Academic Press,

1996, pp. 193– 220.

[Buch96b] B. Buchberger. Mathematica as a Rewrite Language. In: Functional and Logic Programming,

Proceedings of the 2nd Fuji International Workshop on Functional and Logic Programming, November

1-4, 1996, Shonan Village Center; T. Ida, A. Ohori, M. Takeichi (eds.); pp. 1-13.

[Buch96c] B. Buchberger. Using Mathematica for Doing Simple Mathematical Proofs. In: Proceedings

of the 4th Mathematica Users' Conference, Tokyo, November 2, 1996, pp. 80-96, Copyright: Wolfram

Media Publishing.

[Buch96d] B. Buchberger. Symbolic Computation: Computer Algebra and Logic. In: Frontiers of

Combining Systems, Proceedings of FROCOS 1996 (1st International Workshop on Frontiers of Combin-

ing Systems), March 26-28, 1996, Munich; F. Bader, K.U. Schulz (eds.); Applied Logic Series Vol.3,

1996, Kluwer Academic Publisher, Dordrecht - Boston - London, The Netherlands, pp. 193-220.

[Buch96e] B. Buchberger. Mathematische Software-Systeme: Die Zukunft (Mathematical Software

Systems: The Future). Informatik-Spektrum 19(2), 1996, Springer, Heidelberg, pp. 100-101.

[Buch97] B.Buchberger. Mathematica: A System for Doing Mathematics by Computer?. In: Advances in

the Design of Symbolic Computation Systems. A. Miola, M. Temperini (eds.); 1997, Springer Vienna,

ISSN 0943-853X, ISBN 3-211-82-844-3. RISC Book Series on Symbolic Computation, pp. 2-20.

[Buch98a] B. Buchberger. Introduction to Groebner Bases. In: Gröbner Bases and Applications; B.

Buchberger, F. Winkler (eds.); London Mathematical Society Lecture Notes Series 251, 1998, Cam-

bridge University Press, ISBN 0-521-63298-6, pp. 3-31.

[Buch98b] B. Buchberger. An Algorithmic Criterion for the Solvability of a System of Algebraic Equa-

tions. In: Gröbner Bases and Applications; B. Buchberger, F. Winkler (eds.); London Mathematical

Society Lecture Notes Series 251, 1998, Cambridge University Press, ISBN 0-521-63298-6, pp. 535-545.

[Buch98c] B. Buchberger. Theorema: The Current Status. In: Proceedings of the Second International

Theorema Workshop; B. Buchberger, T. Jebelean (eds.); pp. 5– 37.

[Buch99a] B. Buchberger. Theorema: A System for Supporting Mathematical Proving. Workshop of the

Japanese Consortium on Formal Methods, Nagoya, Japan, 1999.

[Buch99b] B. Buchberger. Theorema: A Proving System Based on Mathematica. International Sympo-

sium on Symbolic and Numeric Scientific Computing, Research Institute for Symbolic Computation,

Hagenberg, Austria, 1999.

References 112

[Buch99b] B. Buchberger. Theorema: A Proving System Based on Mathematica. International Sympo-

sium on Symbolic and Numeric Scientific Computing, Research Institute for Symbolic Computation,

Hagenberg, Austria, 1999.

[Buch99c] B. Buchberger. Theorem Proving Versus Theory Exploration. Invited Talk at Calculemus

Workshop, University of Trento, Italy, July 11, 1999.

[Buch00] B.Buchberger. Theory Exploration with Theorema. Analele Universitatii Din Timisoara, Seria

Matematica-Informatica XXXVIII(2), 2000. ISSN 1124-970X. Selected papers of the 2nd International

Workshop on Symbolic and Numeric Algorithms in Scientific Computing, Oct. 4-6, 2000, Timisoara,

Romania; T. Jebelean, V. Negru, A. Popovici (eds.), pp. 9-32.

[Buch03] B. Buchberger. Groebner Rings in Theorema: A Case Study in Functors and Categories.

Johannes Kepler University Linz, Spezialforschungsbereich F013. Technical report no. 2003-49, SFB

Report, November 2003.

[Buch04] B. Buchberger. Algorithm Supported Mathematical Theory Exploration: A Personal View and

Stragegy. In: Proceedings of AISC 2004 (7th International Conference on Artificial Intelligence and

Symbolic Computation), 22-24 September 2004; B. Buchberger, J. Campbell (eds.); Springer Lecture

Notes in Artificial Intelligence 3249. Copyright: Springer, Berlin-Heidelberg, RISC, Johannes Kepler

University, Austria, ISSN 0302-9743, ISBN 3-540-232, pp. 236-250.

[Buch07a] B. Buchberger. Translation of Sequence Variables into Java. Personal communication,

Theorema seminar, Research Institute for Symbolic Computation, Johannes Kepler University Linz,

2007.

[Buch07b] B. Buchberger. Translation of Functor Based Domain Definitions into Java. Personal commu-

nication, Theorema seminar, Research Institute for Symbolic Computation, Johannes Kepler University

Linz, 2007.

[Buch08] B. Buchberger. Groebner Bases in Theorema Using Functors. Collection of Extended

Abstracts; D.M. Wang (ed.); 1st International Conference "Symbolic Computation in Cryptography",

Beihan University, Department of Computer Science, Bejing, April 28-30, 2008.

[BuLo82] B.Buchberger, R. Loos. Algebraic Simplification. In: Computer Algebra - Symbolic and

Algebraic Computation; B. Buchberger, G. E. Collins, R. Loos (eds.); 1982, pp. 11-43. Copyright:

Springer Verlag, Vienna - New York.

[BuWi98] B. Buchberger, W. Windsteiger. The Theorema Language: Implementing Object- and Meta-

Level Usage of Symbols. In: Proceedings of Calculemus 98, Eindhoven, Netherlands, 1998.

[EFT92] H.D. Ebbinghaus, J. Flum, W. Thomas. Einführung in die mathematische Logik. BI Wissen-

schaftsverlag Mannheim/Leipzig/Wien/Zürich, 3.Edition, 1992. ISBN 3-411-15603-1.

[Gies07] M. Giese. Abstract Data Type Based Compilation of Theorema into Java. Personal communica-

tion, Theorema seminar, Research Institute for Symbolic Computation, Johannes Kepler University Linz,

2007.

[GHJV94] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns, Elements of Reusable Object-

Oriented Software. Addision-Wesley Professional Computing Series, 1994. ISBN 978-0201633610.

References 113

[Hibe95] C. Hiber. An Exploration of Improved Buchberger's Algorithms for the Construction of

Gröbner Bases (German). Department of Computer Sciences, Saarland University, Germany. Diploma

Thesis, 1995.

[Jebe07] T. Jebelean. Elimination of Pattern Matching. Personal communication, Theorema seminar,

Research Institute for Symbolic Computation, Johannes Kepler University Linz, 2007.

[KuBu04] T. Kutsia, B. Buchberger. Predicate Logic with Sequence Variables and Sequence Function

Symbols. In: Proceedings of the 3rd International Conference on Mathematical Knowledge Manage-

ment, MKM'04; A. Asperti, G. Bancerek, A. Trybulec (eds.); Lecture Notes in Computer Science 3119,

Sept 19-21, 2004, Springer Verlag, Bialowieza, Poland, ISBN 3-540-23029-7, pp. 205-219.

[Kuts07] T. Kutsia. Sequence Variables and Linear Pattern Matching. Personal communication, Theo-

rema seminar, Research Institute for Symbolic Computation, Johannes Kepler University Linz, 2007.

[Maed97] R. Maeder. Programming in Mathematica. Addison-Wesley, 3rd edition, 1997. ISBN 0-201-

85449-X.

[Mitc01] J.C. Mitchell, K. Apt. Concepts in Programming Languages. Cambridge University Press, 1st

edition, 2001.ISBN 978-0521780988.

[Mma] Mathematica. Developed at Wolfram Research Inc., directed by S. Wolfram.

http://www.wolfram.com.

[SrSt07] N. Sridranop, R. Stansifer. Higher-order Functional Programming and Wildcards in Java. In:

Proceedings of the 45th Annual Southeast Regional Conference, Winston-Salem, NC, USA, March

23-24, 2007, ISBN 978-1-59593-629-5.

[Tma97] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, D. Vasaru. A Survey of the

Theorema project. In: Proceedings of ISSAC'97, International Symposium on Symbolic and Algebraic

Computation, Maui, Hawaii, July 21-23, 1997; W. Kuechlin (ed.); ACM Press, ISBN 0-89791-875-4,

pp. 384-391.

[Tma98] B. Buchberger, K. Aigner, C. Dupré, T. Jebelean, F. Kriftner, M. Marin, K. Nakagawa, O.

Podisor, E. Tomuta, Y. Usenko, D. Vasaru, W. Windsteiger. Theorema: An Integrated System for

Computation and Deduction in Natural Style. Technical report no. 98-25 in RISC Report Series,

Johannes Kepler University Linz, Austria, December 1998.

[Tma99] B. Buchberger, C. Dupré, T. Jebelean, K. Kriftner, K. Nakagawa, D. Vasaru, W. Windsteiger.

Theorema: A Short Demo. In: Proceedings of the International Mathematica Symposium '99, Research

Institute for Symbolic Computation, Austria, 1999.

[Tma00] B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, W. Windsteiger.

The Theorema Project: A Progress Report. In: Symbolic Computation and Automated Reasoning,

Proceedings of CALCULEMUS 2000, Symposium on the Integration of Symbolic Computation and

Mechanized Reasoning; M. Kerber, M. Kohlhase (eds.); 6-7 August 2000, ISBN 1-56881-145-4, pp.

98-113.

[Tma00a] B. Buchberger, C. Dupré, T. Jebelean, K. Kriftner, K. Nakagawa, D. Vasaru, W. Windsteiger.

The Theorema Project: A Progress Report. In: Proceedings of the 8th Symposium on the Integration of

Symbolic Computation and Mechanized Reasoning, St. Andrews, Scotland, August 6-7 2000; M. Kerber,

M. Kohlhase (eds.); pp. 100– 115.

References 114

[Tma00a] B. Buchberger, C. Dupré, T. Jebelean, K. Kriftner, K. Nakagawa, D. Vasaru, W. Windsteiger.

The Theorema Project: A Progress Report. In: Proceedings of the 8th Symposium on the Integration of

Symbolic Computation and Mechanized Reasoning, St. Andrews, Scotland, August 6-7 2000; M. Kerber,

M. Kohlhase (eds.); pp. 100– 115.

[Tma00b] Theorema Group. Theorema: A System for Supporting Mathematical Proving Implemented in

Mathematica. Conference of the Association for Symbolic Logic, Chicago, 2000.

[Tma06] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa, F. Piroi, N.

Popov, J. Robu, M. Rosenkranz, W. Windsteiger. Theorema: Towards Computer-Aided Mathematical

Theory Exploration. Journal of Applied Logic 4(4), pp. 470-504. 2006. ISSN 1570-8683.

[Trot04] M. Trott. The Mathematica Guidebook: Programming. Springer, 2004. ISBN 0387942823.

[WiBu06] W. Windsteiger, B. Buchberger, M. Rosenkranz. Theorema. In: The Seventeen Provers of the

World; F. Wiedijk (ed.); 2006, LNAI 3600, Springer Berlin Heidelberg New York, ISBN 3-540-

30704-4, pp. 96-107.

[Wind99] W. Windsteiger. Building up Hierarchical Mathematical Domains Using Functors in Mathemat-

ica. In: Electronic Notes in Theoretical Computer Science; A. Armando, T. Jebelean (eds.); volume 23-3,

Elsevier, 1999, pp. 83– 102.

[Wind01] W. Windsteiger. A Set Theory Prover in Theorema: Implementation and Practical Applica-

tions. Research Institute for Symbolic Computation, Johannes Kepler University Linz, Austria. PhD

Thesis, 2001.

[Wind06] W. Windsteiger. Algorithmic Methods 1 (German). Research Institute for Symbolic Computa-

tion, Johannes Kepler University Linz, Austria. Lecture notes, winter semester 2006.

[Zapl04] A. Zapletal. Algorithms in Computer Algebra for Polynomial Ideals and Modules (German).

Institute of Discrete Mathematics and Geometry, Technical University of Vienna, Austria. Diploma

Thesis, 2004.

References 115

Curriculum Vitæ

Personal Data
Name Alexander Zapletal

Nationality Austria

Date and place of birth July 18, 1979, Vienna, Austria

Email alexander@zapletal.at

Education
1997 High school graduation at Gymnasium Neulandschule Laaerberg, Vienna.

1997-2004 Studies in computer science and mathematics at Technical University of

Vienna, Austria.

2004 Diploma degree in computer science. Diploma thesis: "Algorithmen in der

Computeralgebra für Polynomideale und -moduln" ("Algorithms in

Computer Algebra for Polynomial Ideals and Modules").

2004-2008 Doctorate studies in symbolic computation at the Research Institute for

Symbolic Computation (RISC), Johannes Kepler University Linz,

Austria. Scientific Advisor: Prof. Bruno Buchberger.

